33 research outputs found

    A Diagnostic Emulator for HEAO software development

    No full text

    Synthetic, structural, and spectroscopic studies of sterically crowded tin-chalcogen acenaphthenes

    Get PDF
    The work in this project was supported by the Engineering and Physical Sciences Research Council (EPSRC) and EaStCHEM.A series of sterically encumbered peri-substituted acenaphthenes have been prepared containing chalcogen and tin moieties at the close 5,6-positions (Acenap[SnPh3][ER], Acenap = acenaphthene-5,6-diyl, ER = SPh (1), SePh (2), TePh (3), SEt (4); Acenap[SnPh2Cl][EPh], E = S (5), Se (6); Acenap[SnBu2Cl][ER], ER = SPh(7), SePh (8), SEt (9)). Two geminally bis(peri-substituted) derivatives ({Acenap[SPh2]}2SnX2, X = Cl (10), Ph (11)) have also been prepared, along with the bromo–sulfur derivative Acenap(Br)(SEt) (15). All 11 chalcogen–tin compounds align a Sn–CPh/Sn–Cl bond along the mean acenaphthene plane and position a chalcogen lone pair in close proximity to the electropositive tin center, promoting the formation of a weakly attractive intramolecular donor–acceptor E···Sn–CPh/E···Sn–Cl 3c-4e type interaction. The extent of E→Sn bonding was investigated by X-ray crystallography and solution-state NMR and was found to be more prevalent in triorganotin chlorides 5–9 in comparison with triphenyltin derivatives 1–4. The increased Lewis acidity of the tin center resulting from coordination of a highly electronegative chlorine atom was found to greatly enhance the lp(E)−σ*(Sn–Y) donor–acceptor 3c-4e type interaction, with substantially shorter E–Sn peri distances observed in the solid state for triorganotin chlorides 5–9 (∼75% ∑rvdW) and significant 1J(119Sn,77Se) spin–spin coupling constants (SSCCs) observed for 6 (163 Hz) and 8 (143 Hz) in comparison to that for the triphenyltin derivative 2 (68 Hz). Similar observations were observed for geminally bis(peri-substituted) derivatives 10 and 11.PostprintPeer reviewe

    The role of the tubular biomarkers NAG, kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in patients with chest pain before contrast media exposition

    No full text
    Aim: We evaluated the role of the tubular biomarkers N-acetyl-ss-D-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in patients with chest pain. Methods: Serum and urine samples were collected of 223 patients and 47 healthy controls. None of them was exposed to contrast media. Results: NAG showed among others significant correlation with N-terminal pro brain natriuretic peptide (NTproBNP), troponin I and creatinine. KIM-1 and NGAL showed weaker correlations. NAG was significantly elevated in all subgroups of acute coronary syndrome (ACS) compared with chest wall syndrome and controls. NAG was an independent predictor for the diagnosis of myocardial infarction. Conclusion: NAG may demonstrate the presence of acute tubular injury due to cardiac impairment already in the emergency department. NAG should be evaluated as marker of acute cardiorenal syndrome in patients with chest pain
    corecore