50 research outputs found

    Thermostable Direct Hemolysin Downregulates Human Colon Carcinoma Cell Proliferation with the Involvement of E-Cadherin, and β-Catenin/Tcf-4 Signaling

    Get PDF
    BACKGROUND: Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer. KEY RESULTS: In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of β-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27(Kip1) in presence of CaSR agonists. CONCLUSION: Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-β-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors

    Different classes of nucleotide binding sites in the (Na<sup>+</sup> + K<sup>+</sup>)-ATPase studied by affinity labeling and nucleotide-dependent SH-group modifications

    No full text
    The ATP analog 6-[(3-carboxy-4-nitrophenyl)thiol]-9-beta-D-ribofuranosylpurine 5'-triphosphate (Nbs6ITP) is slowly hydrolyzed at pH 7.4 by the (Na+ + K+)-ATPase, whereas it binds covalently at pH 8.5 and inhibits the enzyme irreversibly. Time courses of irreversible inhibition could only be fitted to a model in which the enzyme can exist in two slowly interchangeable states, one of which is enzymatically active and binds Nbs6ITP first reversibly and then covalently. Arguments that the covalent binding occurs at a low affinity nucleotide binding site are: (a) similarity of the Ki Nbs6ITP for the reversible and the irreversible inhibition and of K0.5 for ATP protection; (b) stoichiometry of covalent Nbs6ITP binding per alpha subunit of 0.8; and (c) change of complex substrate dependence of the enzyme to a Michaelis-Menten type after Nbs6ITP modification. This change in kinetics and the finding that the Nbs6ITP inactivation at a low affinity nucleotide binding site is increased by micromolar ADP concentrations indicates that the (Na+ + K+)-ATPase contains two different nucleotide binding sites. Since studies of nucleotide effects on enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) did not confirm the hypothesis of an SH-group in a nucleotide binding site, Nbs6ITP may bind to another functional group, e.g. to an OH-group of tyrosine
    corecore