18,208 research outputs found
Trilingual conversations: a window into multicompetence
A recurrent theme in the literature on trilingual language use is the question of whether there is a specific “trilingual competence.” In this paper we consider this question in the light of codeswitching patterns in two dyadic trilingual conversations between a mother and daughter conducted in (Lebanese) Arabic, French, and English. Quantitative and qualitative analysis of codeswitching in both conversants shows that, despite the fact that both subjects are fluent in all three languages, uses of switching are significantly different for mother and daughter across a number of features, including relative frequency of different switch types, and the incidence of hybrid constructions involving items from two or more languages. The subjects appear to display qualitatively distinct profiles of competence in the trilingual mode. This in turn leads to the conclusion that the facts of trilingual language use are best characterized in terms of “multicompetence” (Cook, 1991). The paper concludes with some further reflections on the uniqueness of trilingual language use (an “old chestnut” in
trilingualism research, cf. Klein, 1995)
Testrun results from prototype fiber detectors for high rate particle tracking
A fiber detector concept has been realized allowing to registrate particles
within less than 100 nsec with a space point precision of about 0.1 mm at low
occupancy. Three full size prototypes have been build by different producers
and tested at a 3 GeV electron beam at DESY. After 3 m of light guides 8-10
photoelectrons were registrated by multichannel photomultipliers providing an
efficiency of more than 99%. Using all available data a resolution of 0.086 mm
was measured.Comment: 18 pages, 17 figure
Optical spin pumping of modulation doped electrons probed by a two-color Kerr rotation technique
We report on optical spin pumping of modulation electrons in CdTe-based
quantum wells with low intrinsic electron density (by 10^10 cm^{-2}). Under
continuous wave excitation, we reach a steady state accumulated spin density of
about 10^8 cm^{-2}. Using a two-color Hanle-MOKE technique, we find a spin
relaxation time of 34 ns for the localized electrons in the nearly unperturbed
electron gas. Independent variation of the pump and probe energies demonstrates
the presence of additional non-localized electrons in the quantum well, whose
spin relaxation time is substantially shorter
Specifying and Testing -Safety Properties for Machine-Learning Models
Machine-learning models are becoming increasingly prevalent in our lives, for instance assisting in image-classification or decision-making tasks. Consequently, the reliability of these models is of critical importance and has resulted in the development of numerous approaches for validating and verifying their robustness and fairness. However, beyond such specific properties, it is challenging to specify, let alone check, general functional-correctness expectations from models. In this paper, we take inspiration from specifications used in formal methods, expressing functional-correctness properties by reasoning about different executions, so-called -safety properties. Considering a credit-screening model of a bank, the expected property that "if a person is denied a loan and their income decreases, they should still be denied the loan" is a 2-safety property. Here, we show the wide applicability of -safety properties for machine-learning models and present the first specification language for expressing them. We also operationalize the language in a framework for automatically validating such properties using metamorphic testing. Our experiments show that our framework is effective in identifying property violations, and that detected bugs could be used to train better models
Search for axions in streaming dark matter
A new search strategy for the detection of the elusive dark matter (DM) axion
is proposed. The idea is based on streaming DM axions, whose flux might get
temporally enormously enhanced due to gravitational lensing. This can happen if
the Sun or some planet (including the Moon) is found along the direction of a
DM stream propagating towards the Earth location. The experimental requirements
to the axion haloscope are a wide-band performance combined with a fast axion
rest mass scanning mode, which are feasible. Once both conditions have been
implemented in a haloscope, the axion search can continue parasitically almost
as before. Interestingly, some new DM axion detectors are operating wide-band
by default. In order not to miss the actually unpredictable timing of a
potential short duration signal, a network of co-ordinated axion antennae is
required, preferentially distributed world-wide. The reasoning presented here
for the axions applies to some degree also to any other DM candidates like the
WIMPs.Comment: 5 page
- …