2,167 research outputs found

    Theory of AC Anomalous Hall Conductivity in d-electron systems

    Full text link
    To elucidate the intrinsic nature of anomalous Hall effect (AHE) in dd-electron systems, we study the AC anomalous Hall conductivity (AHC) in a tight-binding model with (dxz,dyzd_{xz},d_{yz})-orbitals. We drive a general expression for the AC AHC σxy(ω)\sigma_{xy}(\omega), which is valid for finite quasiparticle damping rate γ\gamma=/2τ\hbar/2\tau, and find that the AC AHC is strongly dependent on γ\gamma. When γ=+0\gamma=+0, the AC AHC shows a spiky peak at finite energy Δ\Delta that originates from the interband particle-hole excitation, where Δ\Delta represents the minimum band-splitting measured from the Fermi level. In contrast, we find that this spiky peak is quickly suppressed when γ\gamma is finite. By using a realistic value of γ(ω)\gamma(\omega) at ω=Δ/2\omega=\Delta/2 in dd-electron systems, the spiky peak is considerably suppressed. In the present model, the obtained results also represents the AC spin Hall conductivity in a paramagnetic state.Comment: 13pages, 9 figure

    Correlation of high energy muons with primary composition in extensive air shower

    Get PDF
    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed

    Proportional drift tubes for large area muon detectors

    Get PDF
    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire

    Inelastic X-Ray Scattering Study of Exciton Properties in an Organic Molecular crystal

    Full text link
    Excitons in a complex organic molecular crystal were studied by inelastic x-ray scattering (IXS) for the first time. The dynamic dielectric response function is measured over a large momentum transfer region, from which an exciton dispersion of 130 meV is observed. Semiempirical quantum chemical calculations reproduce well the momentum dependence of the measured dynamic dielectric responses, and thus unambiguously indicate that the lowest Frenkel exciton is confined within a fraction of the complex molecule. Our results demonstrate that IXS is a powerful tool for studying excitons in complex organic molecular systems. Besides the energy position, the IXS spectra provide a stringent test on the validity of the theoretically calculated exciton wave functions.Comment: 4 pages, 4 figure
    corecore