1,283 research outputs found

    New Insights into Variations in Enceladus Plume Particle Launch Velocities from Cassini-VIMS spectral data

    Full text link
    Enceladus' plume consists mainly of a mixture of water vapor and solid ice particles that may originate from a subsurface ocean. The physical processes underlying Enceladus' plume particle dynamics are still being debated, and quantifying the particles' size distribution and launch velocities can help constrain these processes. Cassini's Visual and Infrared Mapping Spectrometer (VIMS) observed the Enceladus plume over a wavelength range of 0.9 micron to 5.0 microns for a significant fraction of Enceladus' orbital period on three dates in the summer of 2017. We find that the relative brightness of the plume on these different dates varies with wavelength, implying that the particle size distribution in the plume changes over time. These observations also enable us to study how the particles' launch velocities vary with time and observed wavelength. We find that the typical launch velocity of particles remains between 140 m/s and 148 m/s at wavelengths between 1.2 microns and 3.7 microns. This may not be consistent with prior models where particles are only accelerated by interactions with the vent walls and gas, and could imply that mutual particle collisions close to the vent are more important than previously recognized.Comment: 13 pages, 8 figures, accepted for publication in PS

    The population of propellers in Saturn's A Ring

    Full text link
    We present an extensive data set of ~150 localized features from Cassini images of Saturn's Ring A, a third of which are demonstrated to be persistent by their appearance in multiple images, and half of which are resolved well enough to reveal a characteristic "propeller" shape. We interpret these features as the signatures of small moonlets embedded within the ring, with diameters between 40 and 500 meters. The lack of significant brightening at high phase angle indicates that they are likely composed primarily of macroscopic particles, rather than dust. With the exception of two features found exterior to the Encke Gap, these objects are concentrated entirely within three narrow (~1000 km) bands in the mid-A Ring that happen to be free from local disturbances from strong density waves. However, other nearby regions are similarly free of major disturbances but contain no propellers. It is unclear whether these bands are due to specific events in which a parent body or bodies broke up into the current moonlets, or whether a larger initial moonlet population has been sculpted into bands by other ring processes.Comment: 31 pages, 10 figures; Accepted at A

    Discussion of Recent Decisions

    Get PDF

    Detectability of Microwave Background Polarization

    Full text link
    [NOTE: Previous versions of this paper (both on astro-ph and published in Phys. Rev. D) contain results that are in error. The power spectra C_l were normalized incorrectly by a factor of 2 pi. All observing times in detector-years in those versions are too large by a factor of 2 pi. The main place these numbers appear is on the vertical axes of Figures 4 and 5. Note that because all calculations were based on the same power spectra, all conclusions pertaining to comparisons of different techniques remain unchanged. This error has been corrected in the present version of the paper. An erratum is being sent to Phys. Rev. D. I apologize for the error.] Using a Fisher-matrix formalism, we calculate the required sensitivities and observing times for an experiment to measure the amplitudes of both E and B components as a function of sky coverage, taking full account of the fact that the two components cannot be perfectly separated in an incomplete sky map. We also present a simple approximation scheme that accounts for mixing of E and B components in computing predicted errors in the E-component power spectrum amplitude. In an experiment with small sky coverage, mixing of the two components increases the difficulty of detecting the subdominant B component by a factor of two or more in observing time; however, for larger survey sizes the effect of mixing is less pronounced. Surprisingly, mixing of E and B components can enhance the detectability of the E component by increasing the effective number of independent modes that probe this componentComment: Previous versions of this paper contained results that were in error. The present version on astro-ph has been corrected, and an erratum is being submitted. See abstract for detail

    Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    Get PDF
    Background: Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results: In the clinical stage of the disease, we detected 105 genes that were differentially expressed (=2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions: The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease

    IEA EBC Annex83 positive energy districts

    Get PDF
    At a global level, the need for energy efficiency and an increased share of renewable energy sources is evident, as is the crucial role of cities due to the rapid urbanization rate. As a consequence of this, the research work related to Positive Energy Districts (PED) has accelerated in recent years. A common shared definition, as well as technological approaches or methodological issues related to PEDs are still unclear in this development and a global scientific discussion is needed. The International Energy Agency’s Energy in Buildings and Communities Programme (IEA EBC) Annex 83 is the main platform for this international scientific debate and research. This paper describes the challenges of PEDs and the issues that are open for discussions and how the Annex 83 is planned and organized to facilitate this and to actively steer the development of PEDs major leaps forward. The main topics of discussion in the PED context are the role and importance of definitions of PEDs, virtual and geographical boundaries in PEDs, the role of different stakeholders, evaluation approaches, and the learnings of realized PED projects

    Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile

    Get PDF
    <p>Background: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression.</p> <p>Methods: Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3).</p> <p>Results: Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies.</p> <p>Conclusions: We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.</p&gt

    A 10-Minute “Mix and Read” Antibody Assay for SARS-CoV-2

    Get PDF
    Accurate and rapid diagnostic tools are needed for management of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Antibody tests enable detection of individuals past the initial phase of infection and help examine vaccine responses. The major targets of human antibody response in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the spike glycoprotein (SP) and nucleocapsid protein (NP). We have developed a rapid homogenous approach for antibody detection termed LFRET (protein L-based time-resolved Förster resonance energy transfer immunoassay). In LFRET, fluorophore-labeled protein L and antigen are brought to close proximity by antigen-specific patient immunoglobulins of any isotype, resulting in TR-FRET signal. We set up LFRET assays for antibodies against SP and NP and evaluated their diagnostic performance using a panel of 77 serum/plasma samples from 44 individuals with COVID-19 and 52 negative controls. Moreover, using a previously described SP and a novel NP construct, we set up enzyme linked immunosorbent assays (ELISAs) for antibodies against SARS-CoV-2 SP and NP. We then compared the LFRET assays with these ELISAs and with a SARS-CoV-2 microneutralization test (MNT). We found the LFRET assays to parallel ELISAs in sensitivity (90–95% vs. 90–100%) and specificity (100% vs. 94–100%). In identifying individuals with or without a detectable neutralizing antibody response, LFRET outperformed ELISA in specificity (91–96% vs. 82–87%), while demonstrating an equal sensitivity (98%). In conclusion, this study demonstrates the applicability of LFRET, a 10-min “mix and read” assay, to detection of SARS-CoV-2 antibodies
    • …
    corecore