12 research outputs found

    Complete blockage of the mevalonate pathway results in male gametophyte lethality

    Get PDF
    Plants have two isoprenoid biosynthetic pathways: the cytosolic mevalonate (MVA) pathway and the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Since the discovery of the MEP pathway, possible metabolic cross-talk between these pathways has prompted intense research. Although many studies have shown the existence of such cross-talk using feeding experiments, it remains to be determined if native cross-talk, rather than exogenously applied metabolites, can compensate for complete blockage of the MVA pathway. Previously, Arabidopsis mutants for HMG1 and HMG2 encoding HMG-CoA reductase (HMGR) were isolated. Although it was shown that HMGR1 is a functional HMGR, the enzyme activity of HMGR2 has not been confirmed. It is demonstrated here that HMG2 encodes a functional reductase with similar activity to HMGR1, using enzyme assays and complementation experiments. To estimate the contribution of native cross-talk, an attempt was made to block the MVA pathway by making double mutants lacking both HMG1 and HMG2, but no double homozygotes were detected in the progeny of self-pollinated HMG1/hmg1 hmg2/hmg2 plants. hmg1 hmg2 male gametophytes appeared to be lethal based on crossing experiments, and microscopy indicated that ∼50% of the microspores from the HMG1/hmg1 hmg2/hmg2 plant appeared shrunken and exhibited poorly defined endoplasmic reticulum membranes. In situ hybridization showed that HMG1 transcripts were expressed in both the tapetum and microspores, while HMG2 mRNA appeared only in microspores. It is concluded that native cross-talk from the plastid cannot compensate for complete blockage of the MVA pathway, at least during male gametophyte development, because either HMG1 or HMG2 is required for male gametophyte development

    Energy transfer in hyperthermal Xe-graphite surface scattering

    No full text
    The scattering of a hyperthermal Xe from a graphite (0001) surface has been studied using a molecular beam-surface scattering technique and molecular dynamics (MD) simulations. The angular and velocity distributions of scattered Xe atoms were measured at incidence energies from 0.45 to 3.5 eV, three incidence angles of 15°, 35° and 60° and the surface temperatures of 300 K and 550 K. The observed time-of-flight spectra exhibit a sharp velocity distribution with only one velocity component, which is ascribed to the direct inelastic scattering process. The angle-resolved energy ratios of the mean final translational energy over the mean incidence energy Ef/Ei agree well with those predicted based on the assumption of the conservation of the momentum parallel to the surface. The Hard-Cube model, where the mass of the cube is approximately 310 u, has reproduced the angle-resolved flux distributions of scattered Xe atoms. In the Hard-Cube model almost 80% of the normal component of the incidence translational energy is found to be lost in collision. The MD simulations reproduce well the experimental results by using the Brenner potential for intralayer C atoms and a Lennard-Jones potential for interlayer C–C pair interactions
    corecore