15 research outputs found

    Measurement of the double-\beta decay half-life of ^{136}Xe with the KamLAND-Zen experiment

    Full text link
    We present results from the KamLAND-Zen double-beta decay experiment based on an exposure of 77.6 days with 129 kg of 136^{136}Xe. The measured two-neutrino double-beta decay half-life of 136^{136}Xe is T1/22ν=2.38±0.02(stat)±0.14(syst)×1021T_{1/2}^{2\nu} = 2.38 \pm 0.02(stat) \pm 0.14(syst) \times 10^{21} yr, consistent with a recent measurement by EXO-200. We also obtain a lower limit for the neutrinoless double-beta decay half-life, T1/20ν>5.7×1024T_{1/2}^{0\nu} > 5.7 \times 10^{24} yr at 90% confidence level (C.L.), which corresponds to almost a five-fold improvement over previous limits.Comment: 6 pages, 4 figures. Version as published in PR

    7Be Solar Neutrino Measurement with KamLAND

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be solar neutrino flux of (3.26 +/- 0.50) x 10^9 cm^-2s^-1, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a nu_e survival probability of 0.66 +/- 0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 +/- 0.98) x 10^9 cm^-2s^-1, which is consistent with the standard solar model predictions.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Limit on Neutrinoless {\ beta}{\ beta} Decay of Xe-136 from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in Ge-76

    Get PDF
    We present results from the first phase of the KamLAND-Zen double-beta decay experiment, corresponding to an exposure of 89.5 kg yr of Xe-136. We obtain a lower limit for the neutrinoless double-beta decay half-life of T_{1/2}^{0{\nu}} > 1.9 x 10^{25} yr at 90% C.L. The combined results from KamLAND-Zen and EXO-200 give T_{1/2}^{0{\nu}} > 3.4 x 10^{25} yr at 90% C.L., which corresponds to a Majorana neutrino mass limit of < (120-250) meV based on a representative range of available matrix element calculations. Using those calculations, this result excludes the Majorana neutrino mass range expected from the neutrinoless double-beta decay detection claim in Ge-76, reported by a part of the Heidelberg-Moscow Collaboration, at more than 97.5% C.L

    Limit on Neutrinoless β

    No full text
    We present results from the first phase of the KamLAND-Zen double-beta decay experiment, corresponding to an exposure of 89.5 kg yr of Xe136. We obtain a lower limit for the neutrinoless double-beta decay half-life of T0ν1/2&gt;1.9×1025  yr at 90% C.L. The combined results from KamLAND-Zen and EXO-200 give T0ν1/2&gt;3.4×1025  yr at 90% C.L., which corresponds to a Majorana neutrino mass limit of ⟨mββ⟩&lt;(120-250)  meV based on a representative range of available matrix element calculations. Using those calculations, this result excludes the Majorana neutrino mass range expected from the neutrinoless double-beta decay detection claim in Ge76, reported by a part of the Heidelberg-Moscow Collaboration, at more than 97.5% C.L

    Reactor on-off antineutrino measurement with KamLAND

    Get PDF
    The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor ν¯e flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor ν¯e oscillation analysis. The data set also has improved sensitivity for other ν¯e signals, in particular ν¯e’s produced in β-decays from U238 and Th232 within the Earth’s interior, whose energy spectrum overlaps with that of reactor ν¯e’s. Including constraints on θ13 from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of tan2θ12=0.436+0.029−0.025, Δm221=7.53+0.18−0.18×10−5  eV2, and sin2θ13=0.023+0.002−0.002. Assuming a chondritic Th/U mass ratio, we obtain 116+28−27 ν¯e events from U238 and Th232, corresponding to a geo ν¯e flux of 3.4+0.8−0.8×106  cm−2 s−1 at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo ν¯e rate
    corecore