1,216 research outputs found

    Exact expressions for correlations in the ground state of the dense O(1) loop model

    Full text link
    Conjectures for analytical expressions for correlations in the dense O(1)(1) loop model on semi infinite square lattices are given. We have obtained these results for four types of boundary conditions. Periodic and reflecting boundary conditions have been considered before. We give many new conjectures for these two cases and review some of the existing results. We also consider boundaries on which loops can end. We call such boundaries ''open''. We have obtained expressions for correlations when both boundaries are open, and one is open and the other one is reflecting. Also, we formulate a conjecture relating the ground state of the model with open boundaries to Fully Packed Loop models on a finite square grid. We also review earlier obtained results about this relation for the three other types of boundary conditions. Finally, we construct a mapping between the ground state of the dense O(1)(1) loop model and the XXZ spin chain for the different types of boundary conditions.Comment: 25 pages, version accepted by JSTA

    Finite-size left-passage probability in percolation

    Full text link
    We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm's left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure

    Construction of a Coordinate Bethe Ansatz for the asymmetric simple exclusion process with open boundaries

    Full text link
    The asymmetric simple exclusion process with open boundaries, which is a very simple model of out-of-equilibrium statistical physics, is known to be integrable. In particular, its spectrum can be described in terms of Bethe roots. The large deviation function of the current can be obtained as well by diagonalizing a modified transition matrix, that is still integrable: the spectrum of this new matrix can be also described in terms of Bethe roots for special values of the parameters. However, due to the algebraic framework used to write the Bethe equations in the previous works, the nature of the excitations and the full structure of the eigenvectors were still unknown. This paper explains why the eigenvectors of the modified transition matrix are physically relevant, gives an explicit expression for the eigenvectors and applies it to the study of atypical currents. It also shows how the coordinate Bethe Ansatz developped for the excitations leads to a simple derivation of the Bethe equations and of the validity conditions of this Ansatz. All the results obtained by de Gier and Essler are recovered and the approach gives a physical interpretation of the exceptional points The overlap of this approach with other tools such as the matrix Ansatz is also discussed. The method that is presented here may be not specific to the asymmetric exclusion process and may be applied to other models with open boundaries to find similar exceptional points.Comment: references added, one new subsection and corrected typo

    Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon

    Full text link
    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probability of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions give not only the weights of the various configurations in the three models but also give an insight to the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few references are adde

    Relaxation rate of the reverse biased asymmetric exclusion process

    Full text link
    We compute the exact relaxation rate of the partially asymmetric exclusion process with open boundaries, with boundary rates opposing the preferred direction of flow in the bulk. This reverse bias introduces a length scale in the system, at which we find a crossover between exponential and algebraic relaxation on the coexistence line. Our results follow from a careful analysis of the Bethe ansatz root structure.Comment: 22 pages, 12 figure

    Structure of the two-boundary XXZ model with non-diagonal boundary terms

    Full text link
    We study the integrable XXZ model with general non-diagonal boundary terms at both ends. The Hamiltonian is considered in terms of a two boundary extension of the Temperley-Lieb algebra. We use a basis that diagonalizes a conserved charge in the one-boundary case. The action of the second boundary generator on this space is computed. For the L-site chain and generic values of the parameters we have an irreducible space of dimension 2^L. However at certain critical points there exists a smaller irreducible subspace that is invariant under the action of all the bulk and boundary generators. These are precisely the points at which Bethe Ansatz equations have been formulated. We compute the dimension of the invariant subspace at each critical point and show that it agrees with the splitting of eigenvalues, found numerically, between the two Bethe Ansatz equations.Comment: 9 pages Latex. Minor correction

    Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries

    Full text link
    We analyze the Bethe ansatz equations describing the complete spectrum of the transition matrix of the partially asymmetric exclusion process on a finite lattice and with the most general open boundary conditions. We extend results obtained recently for totally asymmetric diffusion [J. de Gier and F.H.L. Essler, J. Stat. Mech. P12011 (2006)] to the case of partial symmetry. We determine the finite-size scaling of the spectral gap, which characterizes the approach to stationarity at large times, in the low and high density regimes and on the coexistence line. We observe boundary induced crossovers and discuss possible interpretations of our results in terms of effective domain wall theories.Comment: 30 pages, 9 figures, typeset for pdflatex; revised versio

    Exact Spectral Gaps of the Asymmetric Exclusion Process with Open Boundaries

    Full text link
    We derive the Bethe ansatz equations describing the complete spectrum of the transition matrix of the partially asymmetric exclusion process with the most general open boundary conditions. By analysing these equations in detail for the cases of totally asymmetric and symmetric diffusion, we calculate the finite-size scaling of the spectral gap, which characterizes the approach to stationarity at large times. In the totally asymmetric case we observe boundary induced crossovers between massive, diffusive and KPZ scaling regimes. We further study higher excitations, and demonstrate the absence of oscillatory behaviour at large times on the ``coexistence line'', which separates the massive low and high density phases. In the maximum current phase, oscillations are present on the KPZ scale tL3/2t\propto L^{-3/2}. While independent of the boundary parameters, the spectral gap as well as the oscillation frequency in the maximum current phase have different values compared to the totally asymmetric exclusion process with periodic boundary conditions. We discuss a possible interpretation of our results in terms of an effective domain wall theory.Comment: 42 pages, 25 figures; added appendix and minor correction

    Magnetization Plateaus in a Solvable 3-Leg Spin Ladder

    Full text link
    We present a solvable ladder model which displays magnetization plateaus at fractional values of the total magnetization. Plateau signatures are also shown to exist along special lines. The model has isotropic Heisenberg interactions with additional many-body terms. The phase diagram can be calculated exactly for all values of the rung coupling and the magnetic field. We also derive the anomalous behaviour of the susceptibility near the plateau boundaries. There is good agreement with the phase diagram obtained recently for the pure Heisenberg ladders by numerical and perturbative techniques.Comment: 4 pages, revtex, 3 postscript figures, small changes to the text and references update
    corecore