112 research outputs found

    Local replication of simian immunodeficiency virus in the breast milk compartment of chronically-infected, lactating rhesus monkeys

    Get PDF
    Breast milk transmission remains a major mode of infant HIV acquisition, yet anatomic and immunologic forces shaping virus quasispecies in milk are not well characterized. In this study, phylogenic analysis of envelope sequences of milk SIV variants revealed groups of nearly identical viruses, indicating local virus production. However, comparison of the patterns and rates of CTL escape of blood and milk virus demonstrated only subtle differences between the compartments. These findings suggest that a substantial fraction of milk viruses are produced by locally-infected cells, but are shaped by cellular immune pressures similar to that in the blood

    Sutterella and its metabolic pathways positively correlate with vaccine-elicited antibody responses in infant rhesus macaques

    Get PDF
    Introduction: It is becoming clearer that the microbiota helps drive responses to vaccines; however, little is known about the underlying mechanism. In this study, we aimed to identify microbial features that are associated with vaccine immunogenicity in infant rhesus macaques. Methods: We analyzed 16S rRNA gene sequencing data of 215 fecal samples collected at multiple timepoints from 64 nursery-reared infant macaques that received various HIV vaccine regimens. PERMANOVA tests were performed to determine factors affecting composition of the gut microbiota throughout the first eight months of life in these monkeys. We used DESeq2 to identify differentially abundant bacterial taxa, PICRUSt2 to impute metagenomic information, and mass spectrophotometry to determine levels of fecal short-chain fatty acids and bile acids. Results: Composition of the early-life gut microbial communities in nursery-reared rhesus macaques from the same animal care facility was driven by age, birth year, and vaccination status. We identified a Sutterella and a Rodentibacter species that positively correlated with vaccine-elicited antibody responses, with the Sutterella species exhibiting more robust findings. Analysis of Sutterella-related metagenomic data revealed five metabolic pathways that significantly correlated with improved antibody responses following HIV vaccination. Given these pathways have been associated with short-chain fatty acids and bile acids, we quantified the fecal concentration of these metabolites and found several that correlated with higher levels of HIV immunogen-elicited plasma IgG. Discussion: Our findings highlight an intricate bidirectional relationship between the microbiota and vaccines, where multiple aspects of the vaccination regimen modulate the microbiota and specific microbial features facilitate vaccine responses. An improved understanding of this microbiota–vaccine interplay will help develop more effective vaccines, particularly those that are tailored for early life

    ADCC-activating antibodies correlate with decreased risk of congenital human cytomegalovirus transmission

    Get PDF
    Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence indicates that antibody Fc effector functions may be a previously underappreciated component of maternal immunity against HCMV. We recently reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with protection against cCMV transmission, leading us to hypothesize that additional Fc-mediated antibody functions may be important. In this same cohort of HCMV-transmitting (n = 41) and nontransmitting (n = 40) mother-infant dyads, we report that higher maternal sera antibody–dependent cellular cytotoxicity (ADCC) activation is also associated with lower risk of cCMV transmission. We investigated the relationship between ADCC and IgG responses against 9 viral antigens and found that ADCC activation correlated most strongly with sera IgG binding to the HCMV immunoevasin protein UL16. Moreover, we determined that higher UL16-specific IgG binding and FcγRIII/CD16 engagement were associated with the greatest risk reduction in cCMV transmission. Our findings indicate that ADCC-activating antibodies against targets such as UL16 may represent an important protective maternal immune response against cCMV infection that can guide future HCMV correlates studies and vaccine or antibody-based therapeutic development

    Postnatal Cytomegalovirus Infection and the Risk for Bronchopulmonary Dysplasia

    Get PDF
    Postnatally acquired cytomegalovirus (CMV) is typically benign in term infants but, in very low birth weight (VLBW) infants, can cause pneumonitis and sepsis-like illness. Whether postnatal CMV infection results in long-term pulmonary sequelae in these infants is unknown

    Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin α4β7

    Get PDF
    Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently

    The Magnitude and Kinetics of the Mucosal HIV-Specific CD8+ T Lymphocyte Response and Virus RNA Load in Breast Milk

    Get PDF
    BACKGROUND: The risk of postnatal HIV transmission is associated with the magnitude of the milk virus load. While HIV-specific cellular immune responses control systemic virus load and are detectable in milk, the contribution of these responses to the control of virus load in milk is unknown. METHODS: We assessed the magnitude of the immunodominant GagRY11 and subdominant EnvKY9-specific CD8+ T lymphocyte response in blood and milk of 10 A*3002+, HIV-infected Malawian women throughout the period of lactation and correlated this response to milk virus RNA load and markers of breast inflammation. RESULTS: The magnitude and kinetics of the HIV-specific CD8+ T lymphocyte responses were discordant in blood and milk of the right and left breast, indicating independent regulation of these responses in each breast. However, there was no correlation between the magnitude of the HIV-specific CD8+ T lymphocyte response and the milk virus RNA load. Further, there was no correlation between the magnitude of this response and markers of breast inflammation. CONCLUSIONS: The magnitude of the HIV-specific CD8+ T lymphocyte response in milk does not appear to be solely determined by the milk virus RNA load and is likely only one of the factors contributing to maintenance of low virus load in milk

    Energy scavenging from insect flight

    Full text link
    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (C otinis nitida ) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d 31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm 3 , respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5–22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90804/1/0960-1317_21_9_095016.pd

    Assessment of measles immunity among infants in Maputo City, Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimum age for measles vaccination varies from country to country and thus a standardized vaccination schedule is controversial. While the increase in measles vaccination coverage has produced significant changes in the epidemiology of infection, vaccination schedules have not been adjusted. Instead, measures to cut wild-type virus transmission through mass vaccination campaigns have been instituted. This study estimates the presence of measles antibodies among six- and nine-month-old children and assesses the current vaccination seroconversion by using a non invasive method in Maputo City, Mozambique.</p> <p>Methods</p> <p>Six- and nine-month old children and their mothers were screened in a cross-sectional study for measles-specific antibodies in oral fluid. All vaccinated children were invited for a follow-up visit 15 days after immunization to assess seroconversion. </p> <p>Results</p> <p>82.4% of the children lost maternal antibodies by six months. Most children were antibody-positive post-vaccination at nine months, although 30.5 % of nine month old children had antibodies in oral fluid before vaccination. We suggest that these pre-vaccination antibodies are due to contact with wild-type of measles virus. The observed seroconversion rate after vaccination was 84.2%. </p> <p>Conclusion</p> <p>These data indicate a need to re-evaluate the effectiveness of the measles immunization policy in the current epidemiological scenario.</p

    SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques

    Get PDF
    The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19
    • …
    corecore