2,104 research outputs found
Multidimensional entropy landscape of quantum criticality
The Third Law of Thermodynamics states that the entropy of any system in
equilibrium has to vanish at absolute zero temperature. At nonzero
temperatures, on the other hand, matter is expected to accumulate entropy near
a quantum critical point (QCP), where it undergoes a continuous transition from
one ground state to another. Here, we determine, based on general thermodynamic
principles, the spatial-dimensional profile of the entropy S near a QCP and its
steepest descent in the corresponding multidimensional stress space. We
demonstrate this approach for the canonical quantum critical compound
CeCu6-xAux near its onset of antiferromagnetic order. We are able to link the
directional stress dependence of S to the previously determined geometry of
quantum critical fluctuations. Our demonstration of the multidimensional
entropy landscape provides the foundation to understand how quantum criticality
nucleates novel phases such as high-temperature superconductivity.Comment: 14 pages, 4 figure
Fermi Surface of KFeAs from Quantum Oscillations in Magnetostriction
We present a study of the Fermi surface of KFeAs single crystals.
Quantum oscillations were observed in magnetostriction measured down to 50 mK
and in magnetic fields up to 14 T. For , the calculated
effective masses are in agreement with recent de Haas-van Alphen and ARPES
experiments, showing enhanced values with respect to the ones obtained from
previous band calculations. For , we observed a small orbit at a
cyclotron frequency of 64 T, characterized by an effective mass of , supporting the presence of a three-dimensional pocket at the Z-point.Comment: SCES Conference, Tokyo 201
Pressure Effect and Specific Heat of RBa2Cu3Ox at Distinct Charge Carrier Concentrations: Possible Influence of Stripes
In YBa2Cu3Ox, distinct features are found in the pressure dependence of the
transition temperature, dTc/dp, and in DeltaCp*Tc, where DeltaCp is the jump in
the specific heat at Tc: dTc/dp becomes zero when DeltaCp*Tc is maximal,
whereas dTc/dp has a peak at lower oxygen contents where DeltaCp*Tc vanishes.
Substituting Nd for Y and doping with Ca leads to a shift of these specific
oxygen contents, since oxygen order and hole doping by Ca influences the hole
content nh in the CuO2 planes. Calculating nh from the parabolic Tc(nh)
behavior, the features coalesce for all samples at nh=0.11 and nh=0.175,
irrespective of substitution and doping. Hence, this behavior seems to reflect
an intrinsic property of the CuO2 planes. Analyzing our results we obtain
different mechanisms in three doping regions: Tc changes in the optimally doped
and overdoped region are mainly caused by charge transfer. In the slightly
underdoped region an increasing contribution to dTc/dp is obtained when well
ordered CuO chain fragments serve as pinning centers for stripes. This behavior
is supported by our results on Zn doped NdBa2Cu3Ox and is responsible for the
well known dTc/dp peak observed in YBa2Cu3Ox at x=6.7. Going to a hole content
below nh=0.11 our results point to a crossover from an underdoped
superconductor to a doped antiferromagnet, changing completely the physics of
these materials.Comment: 6 pages, 5 figures Proccedings of the 'Stripes 2000' Conference, Rome
(2000
- …