340 research outputs found

    Single vortices observed as they enter NbSe2_2

    Full text link
    We observe single vortices as they penetrate the edge of a superconductor using a high-sensitivity magneto-optical microscope. The vortices leap across a gap near the edge, a distance that decreases with increasing applied field and sample thickness. This behaviour can be explained by the combined effect of the geometrical barrier and bulk pinning.Comment: 2 pages, 1 figure, M2S-Rio proceeding

    Real time magneto-optical imaging of vortices in superconductors

    Full text link
    We demonstrate here real-time imaging of individual vortices in a NbSe2 single crystal using polarized light microscopy. A new high-sensitivity magneto-optical (MO) imaging system enables observation of the static vortex lattice as well as single vortex motion at low flux densities.Comment: 3 pages, 1 figur

    Static and Dynamic Phases for Vortex Matter with Attractive Interactions

    Full text link
    Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in superconducting hybrid structures and multi-band superconductors. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead completely phase separates. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states. We show that a signature of the exotic vortex interactions under transport measurements is a robust double peak feature in the differential conductivity curves.Comment: 5 pages, 4 postscript figure

    Servicing Delay Sensitive Pervasive Communication Through Adaptable Width Channelization for Supporting Mobile Edge Computing

    Get PDF
    Over the last fifteen years, wireless local area networks (WLANs) have been populated by large variety of pervasive devices hosting heterogeneous applications. Pervasive Edge computing encouraged more distributed network applications for these devices, eliminating the round-trip to help in achieving zero latency dream. However, These applications require significantly variable data rates for effective functioning, especially in pervasive computing. The static bandwidth of frequency channelization in current WLANs strictly restricts the maximum achievable data rate by a network station. This static behavior spawns two major drawbacks: under-utilization of scarce spectrum resources and less support to delay sensitive applications such as voice and video.To this point, if the computing is moved to the edge of the network WLANs to reduce the frequency of communication, the pervasive devices can be provided with better services during the communication and networking. Thus, we aim to distribute spectrum resources among pervasive resources based upon delay sensitivity of applications while simultaneously maintaining the fair channel access semantics of medium access control (MAC) layer of WLANs. Henceforth, ultra-low latency, efficiency and reliability of spectrum resources can be assured. In this paper, two novel algorithms have been proposed for adaptive channelization to offer rational distribution of spectrum resources among pervasive Edge nodes based on their bandwidth requirement and assorted ambient conditions. The proposed algorithms have been implemented on a real test bed of commercially available universal software radio peripheral (USRP) devices. Thorough investigations have been carried out to enumerate the effect of dynamic bandwidth channelization on parameters such as medium utilization, achievable throughput, service delay, channel access fairness and bit error rates. The achieved empirical results demonstrate that we can optimally enhance the network-wide throughput by almost 30% using channels of adaptable bandwidths

    Dendritic flux patterns in MgB2 films

    Full text link
    Magneto-opitcal studies of a c-oriented epitaxial MgB2 film with critical current density 10^7 A/cm^2 demonstrate a breakdown of the critical state at temperatures below 10 K [cond-mat/0104113]. Instead of conventional uniform and gradual flux penetration in an applied magnetic field, we observe an abrupt invasion of complex dendritic structures. When the applied field subsequently decreases, similar dendritic structures of the return flux penetrate the film. The static and dynamic properties of the dendrites are discussed.Comment: Accepted to Supercond. Sci. Techno

    Onset of dendritic flux avalanches in superconducting films

    Full text link
    We report a detailed comparison of experimental data and theoretical predictions for the dendritic flux instability, believed to be a generic behavior of type-II superconducting films. It is shown that a thermo-magnetic model published very recently [Phys. Rev. B 73, 014512 (2006)] gives an excellent quantitative description of key features like the instability onset (first dendrite appearance) magnetic field, and how the onset field depends on both temperature and sample size. The measurements were made using magneto-optical imaging on a series of different strip-shaped samples of MgB2. Excellent agreement is also obtained by reanalyzing data previously published for Nb.Comment: 4 pages, 5 figure

    STM Imaging of Flux Line Arrangements in the Peak Effect Regime

    Get PDF
    We present the results of a study of vortex arrangements in the peak-effect regime of 2H-NbSe_2 by scanning tunneling microscopy. By slowly increasing the temperature in a constant magnetic field, we observed a sharp transition from collective vortex motion to positional fluctuations of individual vortices at the temperature which coincides with the onset of the peak effect in ac-susceptibility. We conclude that the peak effect is a disorder driven transition, with the pinning energy winning from the elastic energy.Comment: 4 pages, 4 figures included Manuscript has been submitte

    Interaction between superconducting vortices and Bloch wall in ferrite garnet film

    Full text link
    Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure

    Hydrodynamic Instability of the Flux-antiflux Interface in Type-II Superconductors

    Full text link
    The macroturbulence instability observed in fluxline systems during remagnetization of superconductors is explained. It is shown that when a region with flux is invaded by antiflux the interface can become unstable if there is a relative tangential flux motion. This condition occurs at the interface when the viscosity is anisotropic, e.g., due to flux guiding by twin boundaries in crystals. The phenomenon is similar to the instability of the tangential discontinuity in classical hydrodynamics. The obtained results are supported by magneto-optical observations of flux distribution on the surface of a YBCO single crystal with twins.Comment: 12 pages, 3 figures, submitted to Physical Review Letter
    • …
    corecore