681 research outputs found

    Conductivity in a symmetry broken phase: Spinless fermions with 1/d1/d corrections

    Full text link
    The dynamic conductivity σ(ω)\sigma(\omega) of strongly correlated electrons in a symmetry broken phase is investigated in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple cubic lattice. The investigated symmetry broken phase is the charge density wave (CDW) with wave vector Q=(π,π,π)Q=(\pi,\pi,\pi)^\dagger which occurs at half-filling. The calculations are based on the high dimensional approach, i.e. an expansion in the inverse dimension 1/d1/d is used. The finite dimensionality is accounted for by the inclusion of linear terms in 1/d1/d and the true finite dimensional DOS. Special care is paid to the setup of a conserving approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation is solved for the dynamic conductivity in the non symmetry broken and in the symmetry broken phase (AB-CDW). The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in the limit T0T \to 0 due to a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductivity σ(ω)\sigma(\omega) the energy gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of order 1/d1/d lead to an excitonic resonance lying within the gap.Comment: 23 pages, 19 figures included with psfig, Revtex; Physical Review B15, in press (October/November 1996) depending on the printer/screen driver, it might be necessary to comment out figures 3,4,5,10,11,12,19 and have them printed separatel

    Exact Critical Exponents for Pseudo-Particles in the Kondo Problem

    Full text link
    Exact critical exponents of the Green functions for pseudo-fermions and slave bosons in the SU(NN) Anderson model with UU\rightarrow\infty are obtained by using the Bethe ansatz solution and boundary conformal field theory. They are evaluated exactly for mixed valence systems and Kondo systems with crystalline fields. The results agree with the prediction of Menge and M\"uller-Hartmann, which coincide with those of the X-ray problem. Some implication of our results in one-dimensional chiral systems is also discussed.Comment: 9 pages, no figure

    Vaccine-Induced Subcutaneous Granulomas in Goats Reflect Differences in Host–Mycobacterium Interactions between BCG- and Recombinant BCG-Derivative Vaccines

    Get PDF
    Tuberculous granulomas are highly dynamic structures reflecting the complex host–mycobacterium interactions. The objective of this study was to compare granuloma development at the site of vaccination with BCG and its recombinant derivatives in goats. To characterize the host response, epithelioid cells, multinucleated giant cells (MNGC), T cell subsets, B cells, plasma cells, dendritic cells and mycobacterial antigen were labelled by immunohistochemistry, and lipids and acid-fast bacteria (AFB) were labelled by specific staining. Granulomas with central caseous necrosis developed at the injection site of most goats though lesion size and extent of necrosis differed between vaccine strains. CD4(+) T and B cells were more scarce and CD8(+) cells were more numerous in granulomas induced by recombinant derivatives compared to their parental BCG strain. Further, the numbers of MNGCs and cells with lipid bodies were markedly lower in groups administered with recombinant BCG strains. Microscopic detection of AFB and mycobacterial antigen was rather frequent in the area of central necrosis, however, the isolation of bacteria in culture was rarely successful. In summary, BCG and its recombinant derivatives induced reproducibly subcutaneous caseous granulomas in goats that can be easily monitored and surgically removed for further studies. The granulomas reflected the genetic modifications of the recombinant BCG-derivatives and are therefore suitable models to compare reactions to different mycobacteria or TB vaccines

    Deflection of carbon dioxide laser and helium‐neon laser beams in a long‐pulse relativistic electron beam diode

    Full text link
    Deflection of carbon dioxide and helium‐neon laser beams has been used to measure plasma and neutral density gradients during the operating mode and after the shorting time of a long‐pulse field‐emission electron beam diode. Plasma density gradients of (1014–1015) cm−4 were observed throughout the diode during the final microsecond of the 2–3 μs electron beam pulse. The neutral density gradient was less than 1×1018 cm−4 during the electron beam pulse. Upon diode shorting, neutral density gradients increased to (1018–1019) cm−4 over ∼1 μs, and decayed over many microseconds. Plasma density gradients of ∼1015 cm−4 were also observed after shorting. These experiments demonstrate the value of carbon‐dioxide laser and helium‐neon laser deflection for diagnosing plasma and neutral particles in long‐pulse electron beam diodes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70220/2/RSINAK-62-7-1776-1.pd

    Dynamical correlations in multiorbital Hubbard models: Fluctuation-exchange approximations

    Full text link
    We study the two band degenerate Hubbard model using the Fluctuation Exchange approximation (FLEX) method and compare the results with Quantum Monte-Carlo calculations. Both the self-consistent and the non-self-consistent versions of the FLEX scheme are investigated. We find that, contrary to the one band case, in the multiband case, good agreement with the Quantum Monte-Carlo results is obtained within the electron-electron T-matrix approximation using the full renormalization of the one-particle propagators. The crossover to strong coupling and the formation of satellites is more clearly visible in the non-self-consistent scheme. Finally we discuss the behavior of the FLEX for higher orbital degeneracy.Comment: 18 pages with 12 PS figure

    Antimicrobial susceptibility of bacteria that infect diabetic foot ulcers at Kenyatta National Hospital, Kenya

    Get PDF
    Background: Diabetic foot ulcers are prone to bacterial infection and this forms the major cause of hospital admission among patients with diabetes. Local bacterial sensitivity patterns to antimicrobials used to treat the infections is necessary in guiding drug selection for prompt management of the diabetic foot infections. Objective: To determine the etiology and antimicrobial sensitivity patterns of bacteria that infects diabetic foot ulcers at Kenyatta National Hospital. Methodology: A cross- sectional study was carried out on 75 adult diabetic patients attending Kenyatta National Hospital.  The patients were selected by convenient sampling and data obtained via a questionnaire and antimicrobial susceptibility determination of bacteria from the diabetic foot ulcers using disk diffusion method. Results: A total of 85 bacterial isolates were identified with Staphylococcus aureus (37.3%), Proteus spp (21.3%) and Klebsiella spp (14.7%) as the most prevalent organisms.  Among the Staphylococcus aureus, 39.3% were methicillin resistant. All the bacteria were sensitive to imipenem.   Gram positive and negative bacteria were sensitive to ciprofloxacin and piperacillin-tazobactam, respectively. Varied sensitivities to commonly used antibiotics: amoxicillin-clavulanate, meropenem, clindamycin, ceftriaxone, piperacillin-tazobactam and ciprofloxacin to different isolates are reported. Conclusion: In Kenyatta National Hospital, diabetic foot ulcers are infected with both gram negative and positive bacteria that are highly sensitive to imipenem. This study recommends the initiation of empirical antibiotic therapy with imipenem for moderate to severe diabetic foot infections as culture and sensitivity tests to determine more specific antimicrobials are awaited. Key words: Antimicrobial, Antimicrobial susceptibility, Diabetic foot ulcers

    Kondo Problem and Related One-Dimensional Quantum Systems: Bethe Ansatz Solution and Boundary Conformal Field Theory

    Full text link
    We review some exact results on Kondo impurity systems derived from Bethe-ansatz solutions and boundary conformal field theory with particular emphasis on universal aspects of the phenomenon. The finite-size spectra characterizing the low-energy fixed point are computed from the Bethe-ansatz solutions of various models related to the Kondo problem. Using the finite-size scaling argument, we investigate their exact critical properties. We also discuss that a universal relation between the Kondo effect and the impurity effect in one-dimensional quantum systems usefully expedites our understanding of these different phenomena.Comment: 6 pages, no figure

    Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation

    Full text link
    We calculate the exponents of the threshold singularities in the photoemission spectrum of a deep core hole and its X-ray absorption spectrum in the framework of a systematic many-body theory of slave bosons and pseudofermions (for the empty and occupied core level). In this representation, photoemission and X-ray absorption can be understood on the same footing; no distinction between orthogonality catastrophe and excitonic effects is necessary. We apply the conserving slave particle T-matrix approximation (CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior systems with strong local correlations, to the X-ray problem as a test case. The numerical results for both photoemission and X-ray absorption are found to be in agreement with the exact infrared powerlaw behavior in the weak as well as in the strong coupling regions. We point out a close relation of the CTMA with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio

    Vertex-corrected perturbation theory for the electron-phonon problem with non-constant density of states

    Full text link
    A series of weak-coupling perturbation theories which include the lowest-order vertex corrections are applied to the attractive Holstein model in infinite dimensions. The approximations are chosen to reproduce the iterated perturbation theory in the limit of half-filling and large phonon frequency (where the Holstein model maps onto the Hubbard model). Comparison is made with quantum Monte Carlo solutions to test the accuracy of different approximation schemes.Comment: 31 pages, 15 figures, typeset in ReVTe

    Conserving Diagrammatic Approximations for Quantum Impurity Models: NCA and CTMA

    Full text link
    Self-consistent diagrammatic approximations to the Anderson or Kondo impurity model, using an exact pseudoparticle representation of the impurity states, are reviewed. We first discuss the infrared exponents of the pseudoparticle propagators as indicators of Fermi liquid behavior through their dependence on the impurity occupation and on magnetic field. Then we discuss the Non-Crossing Approximation (NCA), identifying its strengths, but also its fundamental shortcomings. Physical arguments as well as a perturbative renormalization group analysis suggest that an infinite parquet-type resummation of two-particle vertex diagrams, the Conserving T-Matrix Approximation (CTMA) will cure the deficiencies of NCA. We review results on the pseudoparticle spectral functions, the spin susceptibility and the impurity electron spectral function, supporting that the CTMA provides qualitatively correct results, both in the high-temperature regime and in the strong coupling Fermi liquid regime at low temperatures.Comment: 10 pages, invited article, to appear in a special edition of JPSJ "Kondo Effect - 40 Years after the Discovery", published version, some minor typos correcte
    corecore