20 research outputs found

    Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions.</p> <p>Results</p> <p>To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of <it>Escherichia coli </it>(931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state.</p> <p>Conclusion</p> <p>Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered.</p

    Mathematical modeling of intracellular signaling pathways

    Get PDF
    Dynamic modeling and simulation of signal transduction pathways is an important topic in systems biology and is obtaining growing attention from researchers with experimental or theoretical background. Here we review attempts to analyze and model specific signaling systems. We review the structure of recurrent building blocks of signaling pathways and their integration into more comprehensive models, which enables the understanding of complex cellular processes. The variety of mechanisms found and modeling techniques used are illustrated with models of different signaling pathways. Focusing on the close interplay between experimental investigation of pathways and the mathematical representations of cellular dynamics, we discuss challenges and perspectives that emerge in studies of signaling systems

    Simfit: A microcomputer software-toolkit for modelistic studies in biochemistry

    No full text
    A software package suitable for personal computers and designed to handle simulation and fitting problems related to the study of biomolecules under pre-steady and steady state conditions is presented, and its overall architecture as well as the implemented algorithms illustrated. The peculiar features of the package are: (i) integrated capability of simulating dynamic models and fitting to them experimental data; (ii) handling of stiff problems; (iii) free use of algebraic as well as differential equations; (iv) objective comparison of models of different complexity. The above features are discussed through a number of examples taken from the direct experience of the authors in enzyme kinetics and ligand binding

    CySBML: a Cytoscape plugin for SBML

    No full text
    corecore