1,461 research outputs found
Momentum and Coordinate Space Three-nucleon Potentials
In this paper we give explicit formulae in momentum and coordinate space for
the three-nucleon potentials due to and meson exchange, derived
from off-mass-shell meson-nucleon scattering amplitudes which are constrained
by the symmetries of QCD and by the experimental data. Those potentials have
already been applied to nuclear matter calculations. Here we display additional
terms which appear to be the most important for nuclear structure. The
potentials are decomposed in a way that separates the contributions of
different physical mechanisms involved in the meson-nucleon amplitudes. The
same type of decomposition is presented for the TM force: the
, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon
request
axial-vector mixing and charge symmetry breaking
Phenomenological Lagrangians that exhibit (broken) chiral symmetry as well as
isospin violation suggest short-range charge symmetry breaking (CSB)
nucleon-nucleon potentials with a \mbox{\boldmath \sigma}_1
\!\cdot\!\mbox{\boldmath \sigma}_2 structure. This structure could be
realized by the mixing of axial-vector () mesons in a single-meson
exchange picture. The Coleman-Glashow scheme for charge
symmetry breaking applied to meson and baryon mass splittings suggests
a universal scale. This scale can be extended to nonstrange CSB
transitions of size GeV. The
resulting nucleon-nucleon axial-vector meson exchange CSB potential then
predicts effects which are small.Comment: 14 pages. To appear in Phys. Lett.
The cross section minima in elastic Nd scattering: a ``smoking gun'' for three nucleon force effects
Neutron-deuteron elastic scattering cross sections are calculated at
different energies using modern nucleon-nucleon interactions and the
Tucson-Melbourne three-nucleon force adjusted to the triton binding energy.
Predictions based on NN forces only underestimate nucleon-deuteron data in the
minima at higher energies starting around 60 MeV. Adding the three-nucleon
forces fills up those minima and reduces the discrepancies significantly.Comment: 11 pages, 6 figure
Triton calculations with and exchange three-nucleon forces
The Faddeev equations are solved in momentum space for the trinucleon bound
state with the new Tucson-Melbourne and exchange three-nucleon
potentials. The three-nucleon potentials are combined with a variety of
realistic two-nucleon potentials. The dependence of the triton binding energy
on the cut-off parameter in the three-nucleon potentials is studied
and found to be reduced compared to the case with pure exchange. The
exchange parts of the three-nucleon potential yield an overall repulsive
effect. When the recommended parameters are employed, the calculated triton
binding energy turns out to be very close to its experimental value.
Expectation values of various components of the three-nucleon potential are
given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys.
Rev.
Analyzing power in nucleon-deuteron scattering and three-nucleon forces
Three-nucleon forces have been considered to be one possibility to resolve
the well known discrepancy between experimental values and theoretical
calculations of the nucleon analyzing power in low energy nucleon-deuteron
scattering. In this paper, we investigate possible effects of two-pion exchange
three-nucleon forces on the analyzing power and the differential cross section.
We found that the reason for different effects on the analyzing power by
different three-nucleon forces found in previous calculations is related to the
existence of the contact term. Effects of some variations of two-pion exchange
three-nucleon forces are investigated. Also, an expression for the measure of
the nucleon analyzing power with quartet P-wave phase shifts is presented.Comment: 11 pages including 2 eps figures, use epsfig.sty, to appear in Phys.
Rev.
Charge-Asymmetry of the Nucleon-Nucleon Interaction
Based upon the Bonn meson-exchange model for the nucleon-nucleon ()
interaction, we study systematically the charge-symmetry-breaking (CSB) of the
interaction due to nucleon mass splitting. Particular attention is payed
to CSB generated by the -exchange contribution to the interaction,
diagrams, and other multi-meson-exchanges. We calculate the CSB
differences in the effective range parameters as well as phase shift
differences in , and higher partial waves up to 300 MeV lab. energy. We
find a total CSB difference in the singlet scattering length of 1.6 fm which
explains the empirical value accurately. The corresponding CSB phase-shift
differences are appreciable at low energy in the state. In the other
partial waves, the CSB splitting of the phase shifts is small and increases
with energy, with typical values in the order of 0.1 deg at 300 MeV in and
waves.Comment: 11 pages, RevTex, 14 figure
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)
An extensive study of three-nucleon force effects in the entire phase space
of the nucleon-deuteron breakup process, for energies from above the deuteron
breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have
been solved rigorously using the modern high precision nucleon-nucleon
potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We
compare predictions for cross sections and various polarization observables
when NN forces are used alone or when the two pion-exchange Tucson-Melbourne
3NF was combined with each of them. In addition AV18 was combined with the
Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the
TM 3NF, more consistent with chiral symmetry. Large but generally model
dependent 3NF effects have been found in certain breakup configurations,
especially at the higher energies, both for cross sections and spin
observables. These results demonstrate the usefulness of the kinematically
complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure
A New Measurement of the 1S0 Neutron-Neutron Scattering Length using the Neutron-Proton Scattering Length as a Standard
The present paper reports high-accuracy cross-section data for the 2H(n,nnp)
reaction in the neutron-proton (np) and neutron-neutron (nn)
final-state-interaction (FSI) regions at an incident mean neutron energy of
13.0 MeV. These data were analyzed with rigorous three-nucleon calculations to
determine the 1S0 np and nn scattering lengths, a_np and a_nn. Our results are
a_nn = -18.7 +/- 0.6 fm and a_np = -23.5 +/- 0.8 fm. Since our value for a_np
obtained from neutron-deuteron (nd) breakup agrees with that from free np
scattering, we conclude that our investigation of the nn FSI done
simultaneously and under identical conditions gives the correct value for a_nn.
Our value for a_nn is in agreement with that obtained in pion-deuteron capture
measurements but disagrees with values obtained from earlier nd breakup
studies.Comment: 4 pages and 3 figure
Tests of isospin symmetry breaking at meson factories
In a model of isospin symmetry breaking we obtain the () amplitude and the isospin and
relative phase at the resonance in aproximate agreement
with experiment. The model predicts \Gamma(\phi \rightarrow \omega \pi^{0})
\approx 4 \cdot 10^{-4} \;\mbox{MeV}. We have also obtained \Gamma (\phi
\rightarrow \eta' \gamma)=5.2 \cdot 10^{-4} \;\mbox{MeV}. Measuring this
partial width would strongly constrain - mixing. The branching
ratios of the isospin violating decays
and are predicted to be and , respectively, leading to and .Comment: 11 pages 2 Figures ( not included available on request ), Latex,
Karlsruhe TTP42-9
Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction
Charge-symmetry breaking in the nucleon-nucleon force is investigated within
an effective field theory, using a classification of isospin-violating
interactions based on power-counting arguments. The relevant
charge-symmetry-breaking interactions corresponding to the first two orders in
the power counting are discussed, including their effects on the 3He-3H
binding-energy difference. The static charge-symmetry-breaking potential linear
in the nucleon-mass difference is constructed using chiral perturbation theory.
Explicit formulae in momentum and configuration spaces are presented. The
present work completes previously obtained results.Comment: 15 pages, 2 figure
- …