1,461 research outputs found

    Momentum and Coordinate Space Three-nucleon Potentials

    Full text link
    In this paper we give explicit formulae in momentum and coordinate space for the three-nucleon potentials due to ρ\rho and π\pi meson exchange, derived from off-mass-shell meson-nucleon scattering amplitudes which are constrained by the symmetries of QCD and by the experimental data. Those potentials have already been applied to nuclear matter calculations. Here we display additional terms which appear to be the most important for nuclear structure. The potentials are decomposed in a way that separates the contributions of different physical mechanisms involved in the meson-nucleon amplitudes. The same type of decomposition is presented for the ππ\pi - \pi TM force: the Δ\Delta, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon request

    ΔI=1\Delta I=1 axial-vector mixing and charge symmetry breaking

    Full text link
    Phenomenological Lagrangians that exhibit (broken) chiral symmetry as well as isospin violation suggest short-range charge symmetry breaking (CSB) nucleon-nucleon potentials with a \mbox{\boldmath \sigma}_1 \!\cdot\!\mbox{\boldmath \sigma}_2 structure. This structure could be realized by the mixing of axial-vector (1+1^+) mesons in a single-meson exchange picture. The Coleman-Glashow scheme for ΔIz=1\Delta I_{z}=1 charge symmetry breaking applied to meson and baryon SU(2)SU(2) mass splittings suggests a universal scale. This scale can be extended to ΔI=1\Delta I=1 nonstrange CSB transitions a1Hemf1\langle a_1^\circ|H_{em}|f_1\rangle of size 0.005-0.005 GeV2^2. The resulting nucleon-nucleon axial-vector meson exchange CSB potential then predicts ΔI=1\Delta I=1 effects which are small.Comment: 14 pages. To appear in Phys. Lett.

    The cross section minima in elastic Nd scattering: a ``smoking gun'' for three nucleon force effects

    Get PDF
    Neutron-deuteron elastic scattering cross sections are calculated at different energies using modern nucleon-nucleon interactions and the Tucson-Melbourne three-nucleon force adjusted to the triton binding energy. Predictions based on NN forces only underestimate nucleon-deuteron data in the minima at higher energies starting around 60 MeV. Adding the three-nucleon forces fills up those minima and reduces the discrepancies significantly.Comment: 11 pages, 6 figure

    Triton calculations with π\pi and ρ\rho exchange three-nucleon forces

    Full text link
    The Faddeev equations are solved in momentum space for the trinucleon bound state with the new Tucson-Melbourne π\pi and ρ\rho exchange three-nucleon potentials. The three-nucleon potentials are combined with a variety of realistic two-nucleon potentials. The dependence of the triton binding energy on the πNN\pi NN cut-off parameter in the three-nucleon potentials is studied and found to be reduced compared to the case with pure π\pi exchange. The ρ\rho exchange parts of the three-nucleon potential yield an overall repulsive effect. When the recommended parameters are employed, the calculated triton binding energy turns out to be very close to its experimental value. Expectation values of various components of the three-nucleon potential are given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys. Rev.

    Analyzing power in nucleon-deuteron scattering and three-nucleon forces

    Get PDF
    Three-nucleon forces have been considered to be one possibility to resolve the well known discrepancy between experimental values and theoretical calculations of the nucleon analyzing power in low energy nucleon-deuteron scattering. In this paper, we investigate possible effects of two-pion exchange three-nucleon forces on the analyzing power and the differential cross section. We found that the reason for different effects on the analyzing power by different three-nucleon forces found in previous calculations is related to the existence of the contact term. Effects of some variations of two-pion exchange three-nucleon forces are investigated. Also, an expression for the measure of the nucleon analyzing power with quartet P-wave phase shifts is presented.Comment: 11 pages including 2 eps figures, use epsfig.sty, to appear in Phys. Rev.

    Charge-Asymmetry of the Nucleon-Nucleon Interaction

    Get PDF
    Based upon the Bonn meson-exchange model for the nucleon-nucleon (NNNN) interaction, we study systematically the charge-symmetry-breaking (CSB) of the NNNN interaction due to nucleon mass splitting. Particular attention is payed to CSB generated by the 2π2\pi-exchange contribution to the NNNN interaction, πρ\pi\rho diagrams, and other multi-meson-exchanges. We calculate the CSB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences in SS, PP and higher partial waves up to 300 MeV lab. energy. We find a total CSB difference in the singlet scattering length of 1.6 fm which explains the empirical value accurately. The corresponding CSB phase-shift differences are appreciable at low energy in the 1S0^1S_0 state. In the other partial waves, the CSB splitting of the phase shifts is small and increases with energy, with typical values in the order of 0.1 deg at 300 MeV in PP and DD waves.Comment: 11 pages, RevTex, 14 figure

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    A New Measurement of the 1S0 Neutron-Neutron Scattering Length using the Neutron-Proton Scattering Length as a Standard

    Full text link
    The present paper reports high-accuracy cross-section data for the 2H(n,nnp) reaction in the neutron-proton (np) and neutron-neutron (nn) final-state-interaction (FSI) regions at an incident mean neutron energy of 13.0 MeV. These data were analyzed with rigorous three-nucleon calculations to determine the 1S0 np and nn scattering lengths, a_np and a_nn. Our results are a_nn = -18.7 +/- 0.6 fm and a_np = -23.5 +/- 0.8 fm. Since our value for a_np obtained from neutron-deuteron (nd) breakup agrees with that from free np scattering, we conclude that our investigation of the nn FSI done simultaneously and under identical conditions gives the correct value for a_nn. Our value for a_nn is in agreement with that obtained in pion-deuteron capture measurements but disagrees with values obtained from earlier nd breakup studies.Comment: 4 pages and 3 figure

    Tests of isospin symmetry breaking at ϕ(1020)\phi (1020) meson factories

    Full text link
    In a model of isospin symmetry breaking we obtain the (ee+ππ+e^{-} e^{+} \rightarrow \pi^{-} \pi^{+}) amplitude QQ and the isospin I=0I=0 and I=1I=1 relative phase ψ\psi at the ϕ(1020)\phi (1020) resonance in aproximate agreement with experiment. The model predicts \Gamma(\phi \rightarrow \omega \pi^{0}) \approx 4 \cdot 10^{-4} \;\mbox{MeV}. We have also obtained \Gamma (\phi \rightarrow \eta' \gamma)=5.2 \cdot 10^{-4} \;\mbox{MeV}. Measuring this partial width would strongly constrain η\eta-η\eta' mixing. The branching ratios BRBR of the isospin violating decays ρ+π+η\rho^{+} \rightarrow \pi^{+} \eta and ηρ±π\eta' \rightarrow \rho^{\pm} \pi^{\mp} are predicted to be BR(ρ+π+η)=3105BR(\rho^{+} \rightarrow \pi^{+} \eta)=3 \cdot 10^{-5} and BR(ηρ±π)=4103BR(\eta' \rightarrow \rho^{\pm} \pi^{\mp})=4 \cdot 10^{-3}, respectively, leading to BR[ϕρ±π(π±η)π(π±γγ)π]=106BR[\phi \rightarrow \rho^{\pm} \pi^{\mp} \rightarrow (\pi^{\pm} \eta)\pi^{\mp} \rightarrow (\pi^{\pm} \gamma \gamma)\pi^{\mp}]=10^{-6} and BR[ϕηγ(ρ±π)γ]=2106BR[\phi \rightarrow \eta' \gamma \rightarrow (\rho^{\pm} \pi^{\mp})\gamma]=2\cdot 10^{-6}.Comment: 11 pages 2 Figures ( not included available on request ), Latex, Karlsruhe TTP42-9

    Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction

    Full text link
    Charge-symmetry breaking in the nucleon-nucleon force is investigated within an effective field theory, using a classification of isospin-violating interactions based on power-counting arguments. The relevant charge-symmetry-breaking interactions corresponding to the first two orders in the power counting are discussed, including their effects on the 3He-3H binding-energy difference. The static charge-symmetry-breaking potential linear in the nucleon-mass difference is constructed using chiral perturbation theory. Explicit formulae in momentum and configuration spaces are presented. The present work completes previously obtained results.Comment: 15 pages, 2 figure
    corecore