2,925 research outputs found

    The Synthesis of Cyclic Enol Ethers via Molybdenum Alkylidene-Catalyzed Ring-Closing Metathesis

    Get PDF
    An efficient method for the construction of five- and six-membered cyclic vinyl ethers from unsaturated esters using stoichiometric titanium reagents to convert the esters to acyclic olefinic enol ethers which are then transformed to the desired products by catalytic ring-closing olefin metathesis with a molybdenum alkylidene complex is described

    Speech Communication

    Get PDF
    Contains reports on four research projects.U. S. Air Force (Air Force Cambridge Research Center, Air Research and Development Command) under Contract AF19(604)-6102National Science Foundatio

    Localized transverse bursts in inclined layer convection

    Full text link
    We investigate a novel bursting state in inclined layer thermal convection in which convection rolls exhibit intermittent, localized, transverse bursts. With increasing temperature difference, the bursts increase in duration and number while exhibiting a characteristic wavenumber, magnitude, and size. We propose a mechanism which describes the duration of the observed bursting intervals and compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure

    Styles of practice in HIV/AIDS research

    Get PDF

    Fine-Scale Features on the Sea Surface in SAR Satellite Imagery - Part 2: Numerical Modeling

    Get PDF
    With the advent of the new generation of synthetic aperture radar (SAR) satellites, it has become possible to resolve fine-scale features on the sea surface on the scale of meters. The proper identification of sea surface signatures in SAR imagery can be challenging, since some features may be due to atmospheric distortions (gravity waves, squall lines) or anthropogenic influences (slicks), and may not be related to dynamic processes in the upper ocean. In order to improve our understanding of the nature of fine-scale features on the sea surface and their signature in SAR, we have conducted high-resolution numerical simulations combining a three-dimensional non-hydrostatic computational fluid dynamics model with a radar imaging model. The surface velocity field from the hydrodynamic model is used as input to the radar imaging model. The combined approach reproduces the sea surface signatures in SAR of ship wakes, low-density plumes, and internal waves in a stratified environment. The numerical results are consistent with observations reported in a companion paper on in situ measurements during SAR satellite overpasses. Ocean surface and internal waves are also known to produce a measurable signal in the ocean magnetic field. This paper explores the use of computational fluid dynamics to investigate the magnetic signatures of oceanic processes. This potentially provides a link between SAR signatures of transient ocean dynamics and magnetic field fluctuations in the ocean. We suggest that combining SAR imagery with data from ocean magnetometers may be useful as an additional maritime sensing method. The new approach presented in this work can be extended to other dynamic processes in the upper ocean, including fronts and eddies, and can be a valuable tool for the interpretation of SAR images of the ocean surface
    corecore