4,438 research outputs found

    Quench protection analysis in accelerator magnets, a review of the tools

    Full text link
    As accelerator magnets see the increase of their magnetic field and stored energy, quench protection becomes a critical part of the magnet design. Due to the complexity of the quench phenomenon interweaving magnetic, electrical and thermal analysis, the use of numerical codes is a key component of the process. In that respect, we propose here a review of several tools commonly used in the magnet design community.Comment: 4 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    Full text link
    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.Comment: 8 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    The Formation of non-Keplerian Rings of Matter about Compact Stars

    Get PDF
    The formation of energetic rings of matter in a Kerr spacetime with an outward pointing acceleration field does not appear to have previously been noted as a relativistic effect. In this paper we show that such rings are a gravimagneto effect with no Newtonian analog, and that they do not occur in the static limit. The energy efficiency of these rings can, depending of the strength of the acceleration field, be much greater than that of Keplerian disks. The rings rotate in a direction opposite to that of compact star about which they form. The size and energy efficiency of the rings depend on the fundamental parameters of the spacetime as well as the strength the acceleration field.Comment: 19 pages, 7 figures, 1 diagram. Figures are included in the text using the "graphicx" package. If you do not have this package you can use epsfig, or another package as long as you alter the tex file appropriately. Alternatively you could print the figures out seperatel

    Cosmological dynamics of fourth order gravity with a Gauss-Bonnet term

    Full text link
    We consider cosmological dynamics in fourth order gravity with both f(R)f(R) and Φ(G)\Phi(\mathcal {G}) correction to the Einstein gravity (G\mathcal{G} is the Gauss-Bonnet term). The particular case for which both terms are equally important on power-law solutions is described. These solutions and their stability are studied using the dynamical system approach. We also discuss condition of existence and stability of de Sitter solution in a more general situation of power-law ff and Φ\Phi.Comment: published version, references update

    Representations of the Multicast Network Problem

    Full text link
    We approach the problem of linear network coding for multicast networks from different perspectives. We introduce the notion of the coding points of a network, which are edges of the network where messages combine and coding occurs. We give an integer linear program that leads to choices of paths through the network that minimize the number of coding points. We introduce the code graph of a network, a simplified directed graph that maintains the information essential to understanding the coding properties of the network. One of the main problems in network coding is to understand when the capacity of a multicast network is achieved with linear network coding over a finite field of size q. We explain how this problem can be interpreted in terms of rational points on certain algebraic varieties.Comment: 24 pages, 19 figure

    Cosmological constraints on extended Galileon models

    Full text link
    The extended Galileon models possess tracker solutions with de Sitter attractors along which the dark energy equation of state is constant during the matter-dominated epoch, i.e. w_DE = -1-s, where s is a positive constant. Even with this phantom equation of state there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent. Using the observational data of the supernovae type Ia, the cosmic microwave background (CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at the background level and find that the parameter s is constrained to be s=0.034 (-0.034,+0.327) (95% CL) in the flat Universe. In order to break the degeneracy between the models we also study the evolution of cosmological density perturbations relevant to the large-scale structure (LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the model parameters, the LSS and the ISW effect is either positively or negatively correlated. It is then possible to constrain viable parameter spaces further from the observational data of the ISW-LSS cross-correlation as well as from the matter power spectrum.Comment: 17 pages, 9 figures, uses RevTeX4-

    Collimation of a spherical collisionless particles stream in Kerr space-time

    Full text link
    We examine the propagation of collisionless particles emitted from a spherical shell to infinity. The number distribution at infinity, calculated as a function of the polar angle, exhibits a small deviation from uniformity. The number of particles moving from the polar region toward the equatorial plane is slightly larger than that of particles in the opposite direction, for an emission radius >4.5M > 4.5M in extreme Kerr space-time. This means that the black hole spin exerts an anti-collimation effect on the particles stream propagating along the rotation axis. We also confirm this property in the weak field limit. The quadrupole moment of the central object produces a force toward the equatorial plane. For a smaller emission radius r<4.5Mr<4.5M, the absorption of particles into the black hole, the non-uniformity and/or the anisotropy of the emission distribution become much more important.Comment: 11 pages, 8 figures; accepted for publication in CQ

    The volume of Gaussian states by information geometry

    Get PDF
    We formulate the problem of determining the volume of the set of Gaussian physical states in the framework of information geometry. That is, by considering phase space probability distributions parametrized by the covariances and supplying this resulting statistical manifold with the Fisher-Rao metric. We then evaluate the volume of classical, quantum and quantum entangled states for two-mode systems showing chains of strict inclusion
    corecore