5,200 research outputs found

    The digital data processing concepts of the LOFT mission

    Full text link
    The Large Observatory for X-ray Timing (LOFT) is one of the five mission candidates that were considered by ESA for an M3 mission (with a launch opportunity in 2022 - 2024). LOFT features two instruments: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class instrument with approximately 15 times the collecting area of the largest timing mission so far (RXTE) for the first time combined with CCD-class spectral resolution. The WFM will continuously monitor the sky and recognise changes in source states, detect transient and bursting phenomena and will allow the mission to respond to this. Observing the brightest X-ray sources with the effective area of the LAD leads to enormous data rates that need to be processed on several levels, filtered and compressed in real-time already on board. The WFM data processing on the other hand puts rather low constraints on the data rate but requires algorithms to find the photon interaction location on the detector and then to deconvolve the detector image in order to obtain the sky coordinates of observed transient sources. In the following, we want to give an overview of the data handling concepts that were developed during the study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    Investigating the evolution of the dual AGN system ESO~509-IG066

    Get PDF
    We analyze the evolution of the dual AGN in ESO 509-IG066, a galaxy pair located at z=0.034 whose nuclei are separated by 11 kpc. Previous observations with XMM-Newton on this dual AGN found evidence for two moderately obscured (NH1022N_H\sim10^{22} cm2^{-2}) X-ray luminous (LX1043L_X\sim10^{43} erg/s) nuclear sources. We present an analysis of subsequent Chandra, NuSTAR and Swift/XRT observations that show one source has dropped in flux by a factor of 10 between 2004 and 2011, which could be explained by either an increase in the absorbing column or an intrinsic fading of the central engine possibly due to a decrease in mass accretion. Both of these scenarios are predicted by galaxy merger simulations. The source which has dropped in flux is not detected by NuSTAR, which argues against absorption, unless it is extreme. However, new Keck/LRIS optical spectroscopy reveals a previously unreported broad H-alpha line which is highly unlikely to be visible under the extreme absorption scenario. We therefore conclude that the black hole in this nucleus has undergone a dramatic drop in accretion rate. From AO-assisted near-infrared integral-field spectroscopy of the other nucleus, we find evidence that the galaxy merger is having a direct effect on the kinematics of the gas close to the nucleus of the galaxy, providing a direct observational link between the galaxy merger and the mass accretion rate on to the black hole.Comment: Accepted for publication in Ap

    NuSTAR Reveals an Intrinsically X-Ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    Get PDF
    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N_H ~ 1.2^(+0.3)_(-0.3) x 10^(23) cm^(–2)) column. The intrinsic X-ray luminosity (L_(0.5 – 30 keV) ~ 1.0 × 10^(43) erg s^(–1)) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is ~0.03% compared to the typical values of 2%-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope (α_(OX) ~ –1.7). It is a local example of a low-ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon

    Book Reviews

    Get PDF

    Experimental and computational studies of jamming

    Full text link
    Jamming is a common feature of out of equilibrium systems showing slow relaxation dynamics. Here we review our efforts in understanding jamming in granular materials using experiments and computer simulations. We first obtain an estimation of an effective temperature for a slowly sheared granular material very close to jamming. The measurement of the effective temperature is realized in the laboratory by slowly shearing a closely-packed ensemble of spherical beads confined by an external pressure in a Couette geometry. All the probe particles, independent of their characteristic features, equilibrate at the same temperature, given by the packing density of the system. This suggests that the effective temperature is a state variable for the nearly jammed system. Then we investigate numerically whether the effective temperature can be obtained from a flat average over the jammed configuration at a given energy in the granular packing, as postulated by the thermodynamic approach to grains.Comment: 20 pages, 9 figure

    Quantum Mechanics Another Way

    Full text link
    Deformation quantization (sometimes called phase-space quantization) is a formulation of quantum mechanics that is not usually taught to undergraduates. It is formally quite similar to classical mechanics: ordinary functions on phase space take the place of operators, but the functions are multiplied in an exotic way, using the star product. Here we attempt a brief, pedagogical discussion of deformation quantization, that is suitable for inclusion in an undergraduate course.Comment: 14 pages, 3 figures, to be published in Eur. J. Phy

    Reconsidering "the love of art" : evaluating the potential of art museum outreach

    Get PDF
    Art museums have long been identified as bastions of social and cultural exclusion. This conclusion was best evidenced by the large-scale 1967 French study by Bourdieu and Darbel demonstrating the exclusionary nature of “The Love of Art.” However, in recent years there have been increasing efforts to reach out to a broader range of visitors beyond conventional audiences. The present study investigates the impacts of an outreach program at a UK art museum, which sought to engage socially excluded young mothers. This study employs ethnographic research methods on a longitudinal basis to develop qualitative insights about the program seeking to mitigate cultural exclusion. While the study’s findings uphold many longstanding critiques of art museums’ conventional approaches, the study also indicates that carefully designed outreach activities can overcome such limitations and enhance cultural engagement. Thus, art museums’ limited appeal is tied to problematic public engagement practices that can be changed

    Evolutionary plasticity of developmental gene regulatory network architecture

    Get PDF
    Sea stars and sea urchins evolved from a last common ancestor that lived at the end of the Cambrian, approximately half a billion years ago. In a previous comparative study of the gene regulatory networks (GRNs) that embody the genomic program for embryogenesis in these animals, we discovered an almost perfectly conserved five-gene network subcircuit required for endoderm specification. We show here that the GRN structure upstream and downstream of the conserved network kernel has, by contrast, diverged extensively. Mesoderm specification is accomplished quite differently; the Delta–Notch signaling system is used in radically distinct ways; and various regulatory genes have been coopted to different functions. The conservation of the conserved kernel is thus the more remarkable. The results indicate types of network linkage subject to evolutionary change. An emergent theme is that subcircuit design may be preserved even while the identity of genes performing given roles changes because of alteration in their cis-regulatory control systems

    Applying Recent Argumentation Methods to Some Ancient Examples of Plausible Reasoning

    Get PDF
    Plausible (eikotic) reasoning known from ancient Greek (late Academic) skeptical philosophy is shown to be a clear notion that can be analyzed by argu- mentation methods, and that is important for argumentation studies. It is shown how there is a continuous thread running from the Sophists to the skeptical philosopher Carneades, through remarks of Locke and Bentham on the subject, to recent research in artificial intelligence. Eleven characteristics of plausible reasoning are specified by analyzing key examples of it recognized as important in ancient Greek skeptical philosophy using an artificial intelligence model called the Carneades Argumentation System (CAS). By applying CAS to ancient examples it is shown how plausible reasoning is especially useful for gaining a better understanding of evidential reasoning in law, and argued that it can also be applied to everyday argumentation. Our analysis of the snake and rope example of Carneades is also used to point out some ways CAS needs to be extended if it is to more fully model the views of this ancient philosopher on argumentation
    corecore