104 research outputs found

    Use of a fluorescent bile acid to enhance visualization of the biliary tract and bile leaks during laparoscopic surgery in rabbits

    Get PDF
    Background: We set out to determine whether intravenously administered cholylglycylaminofluorescein (CGF), a fluorescent bile acid, would enhance the visualization of the biliary tract and bile leaks in rabbits undergoing laparoscopic cholecystectomy (LC). Methods: CGF was infused at doses of 1, 5, and 10 mg/kg b.w. Biliary recovery was determined spectrophotometrically (six rabbits). For LC (seven rabbits), a blue (fluorescein) filter was attached to the light source, and a fluorescein-emission filter was attached to the charge coupled device (CCD) camera. The biliary tract and bile leak (made by incising the gallbladder) was observed under standard and fluorescent illumination. Results: Apple-green fluorescence appeared in 2 min and persisted for 30-60 min, enhancing visualization of bile duct anatomy as well as the bile leak. Biliary recovery of CGF at 90 min was high (86-96% of the infused dose). Conclusion: In rabbits, CGF is secreted quantitatively in bile, induces biliary fluorescence, and enhances visualization of the bile ducts and bile leaks when viewed with appropriate filter

    Prolactinomas, Cushing's disease and acromegaly: debating the role of medical therapy for secretory pituitary adenomas

    Get PDF
    Pituitary adenomas are associated with a variety of clinical manifestations resulting from excessive hormone secretion and tumor mass effects, and require a multidisciplinary management approach. This article discusses the treatment modalities for the management of patients with a prolactinoma, Cushing's disease and acromegaly, and summarizes the options for medical therapy in these patients

    Tratamento medicamentoso dos tumores hipofisários. parte II: adenomas secretores de ACTH, TSH e adenomas clinicamente não-funcionantes

    Full text link

    Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats

    No full text
    BACKGROUND & AIMS: Dihydroxy bile acids induce a bicarbonate-rich hypercholeresis when secreted into canalicular bile in unconjugated form; the mechanism is cholehepatic shunting. The aim of this study was to identify a xenobiotic that induces hypercholeresis by a similar mechanism. METHODS: Five organic acids (sulindac, ibuprofen, ketoprofen, diclofenac, and norfloxacin) were infused into rats with biliary fistulas. Biliary recovery, bile flow, and biliary bicarbonate were analyzed. Sulindac transport was further characterized using Tr(-) rats (deficient in mrp2, a canalicular transporter for organic anions), the isolated perfused rat liver, and hepatocyte membrane fractions. RESULTS: In biliary fistula rats, sulindac was recovered in bile in unconjugated form and induced hypercholeresis of canalicular origin. Other compounds underwent glucuronidation and were not hypercholeretic. In the isolated liver, sulindac had delayed biliary recovery and induced prolonged choleresis, consistent with a cholehepatic circulation. Sulindac was secreted normally in Tr(-) rats, indicating that its canalicular transport did not require mrp2. In the perfused liver, sulindac inhibited cholyltaurine uptake, and when coinfused with cholyltaurine, induced acute cholestasis. With both basolateral and canalicular membrane fractions, sulindac inhibited cholyltaurine transport competitively. CONCLUSIONS: Sulindac is secreted into bile in unconjugated form by a canalicular bile acid transporter and is absorbed by cholangiocytes, inducing hypercholeresis. At high flux rates, sulindac competitively inhibits canalicular bile salt transport; such inhibition may contribute to the propensity of sulindac to induce cholestasis in patient
    • …
    corecore