238 research outputs found

    A Novel Role for GADD45\u3ci\u3eβ\u3c/i\u3e as a Mediator of \u3ci\u3eMMP-13\u3c/i\u3e Gene Expression during Chondrocyte Terminal Differentiation

    Get PDF
    The growth arrest and DNA damage-inducible 45β (GADD45β) gene product has been implicated in the stress response, cell cycle arrest, and apoptosis. Here we demonstrated the unexpected expression of GADD45β in the embryonic growth plate and uncovered its novel role as an essential mediator of matrix metalloproteinase-13 (MMP-13) expression during terminal chondrocyte differentiation. We identified GADD45β as a prominent early response gene induced by bone morphogenetic protein-2 (BMP-2) through a Smad1/Runx2-dependent pathway. Because this pathway is involved in skeletal development, we examined mouse embryonic growth plates, and we observed expression of Gadd45β mRNA coincident with Runx2 protein in prehypertrophic chondrocytes, whereas GADD45β protein was localized prominently in the nucleus in late stage hypertrophic chondrocytes where Mmp-13 mRNA was expressed. In Gadd45β−/− mouse embryos, defective mineralization and decreased bone growth accompanied deficient Mmp-13 and Col10a1 gene expression in the hypertrophic zone. Transduction of small interferin

    Transcription factors and molecular epigenetic marks underlying EpCAM overexpression in ovarian cancer

    Get PDF
    BACKGROUND: The epithelial cell adhesion molecule (EpCAM) is overexpressed on carcinomas, and its downregulation inhibits the oncogenic potential of multiple tumour types. Here, we investigated underlying mechanisms of epcam overexpression in ovarian carcinoma. METHODS: Expression of EpCAM and DNA methylation (bisulphite sequencing) was determined for ovarian cancer cell lines. The association of histone modifications and 16 transcription factors with the epcam promoter was analysed by chromatin immunoprecipitation. Treatment with 5-Aza-2'-deoxycytidine (5-AZAC) was used to induce EpCAM expression. RESULTS: Expression of EpCAM was correlated with DNA methylation and histone modifications. Treatment with 5-AZAC induced EpCAM expression in negative cells. Ten transcription factors were associated with the epcam gene in EpCAM expressing cells, but not in EpCAM-negative cells. Methylation of an Sp1 probe inhibited the binding of nuclear extract proteins in electromobility shift assays; such DNA methylation sensitivity was not observed for an NF-kappa B probe. CONCLUSION: This study provides insights in transcriptional regulation of epcam in ovarian cancer. Epigenetic parameters associated with EpCAM overexpression are potentially reversible, allowing novel strategies for sustained silencing of EpCAM expression. British Journal of Cancer (2011) 105, 312-319. doi: 10.1038/bjc.2011.231 www.bjcancer.com Published online 21 June 2011 (C) 2011 Cancer Research U

    Isotopenuntersuchungen bei Osteomyelofibrose

    No full text

    Nuclear Pseudo-inclusions in Melanoma Cells

    No full text
    corecore