201 research outputs found
The development of ultrahigh and extreme high vacuum technology for physics research
Over the last 50 years increasingly larger and more sophisticated devices have been designed and put into operation for the study of particle and nuclear physics, magnetic confinement of high-temperature plasmas for thermonuclear fusion research, and gravity wave observatories based on laser interferometers. The evolution of these devices has generated many developments in ultrahigh and extreme high vacuum technology that were required for these devices to meet their operational goals. The technologies that were developed included unique ultrahigh vacuum vessel structures, ultrahigh vacuum compatible materials, surface conditioning techniques, specialized vacuum pumps and vacuum diagnostics. Associated with these technological developments are scientific advancements in the understanding of outgassing limits of UHV-compatible materials and particle-induced desorption effects
Vacuum Polarization and the Electric Charge of the Positron
We show that higher-order vacuum polarization would contribute a measureable
net charge to atoms, if the charges of electrons and positrons do not balance
precisely. We obtain the limit for the sum of
the charges of electron and positron. This also constitutes a new bound on
certain violations of PCT invariance.Comment: 9 pages, 1 figure attached as PostScript file, DUKE-TH-92-38. Revised
versio
Electric charge quantization without anomalies?
In gauge theories like the standard model, the electric charges of the
fermions can be heavily constrained from the classical structure of the theory
and from the cancellation of anomalies. We argue that the anomaly conditions
are not quite as well motivated as the classical constraints, since it is
possible that new fermions could exist which cancel potential anomalies. For
this reason we examine the classically allowed electric charges of the known
fermions and we point out that the electric charge of the tau neutrino is
classically allowed to be non-zero. The experimental bound on the electric
charge of the tau neutrino is many orders of magnitude weaker than for any
other known neutrino. We discuss possible modifications of the minimal standard
model such that electric charge is quantized classically.Comment: 10 McGill/93-3
Constraints on the Electrical Charge Asymmetry of the Universe
We use the isotropy of the Cosmic Microwave Background to place stringent
constraints on a possible electrical charge asymmetry of the universe. We find
the excess charge per baryon to be in the case of a uniform
distribution of charge, where is the charge of the electron. If the charge
asymmetry is inhomogeneous, the constraints will depend on the spectral index,
, of the induced magnetic field and range from
() to (). If one could further
assume that the charge asymmetries of individual particle species are not
anti-correlated so as to cancel, this would imply, for photons, ; for neutrinos, ; and for heavy (light) dark
matter particles ().Comment: New version to appear in JCA
Recommended from our members
PLT neutral injector performance
The experience with respect to beamline operation on PLT and on the Princeton test stand is reviewed. We discuss the performance of the injectors, beam energy distributions as measured by two techniques, beam-associated impurities, control of gas evolution in the drift duct by titanium evaporation, reionization in the drift duct, and the computer archiving and control system currently under development
Search for Millicharged Particles at SLAC
Particles with electric charge q < 10^(-3)e and masses in the range 1--100
MeV/c^2 are not excluded by present experiments. An experiment uniquely suited
to the production and detection of such "millicharged" particles has been
carried out at SLAC. This experiment is sensitive to the infrequent excitation
and ionization of matter expected from the passage of such a particle. Analysis
of the data rules out a region of mass and charge, establishing, for example, a
95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged
particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted
to Physical Review Letter
Gliders2d: Source Code Base for RoboCup 2D Soccer Simulation League
We describe Gliders2d, a base code release for Gliders, a soccer simulation
team which won the RoboCup Soccer 2D Simulation League in 2016. We trace six
evolutionary steps, each of which is encapsulated in a sequential change of the
released code, from v1.1 to v1.6, starting from agent2d-3.1.1 (set as the
baseline v1.0). These changes improve performance by adjusting the agents'
stamina management, their pressing behaviour and the action-selection
mechanism, as well as their positional choice in both attack and defense, and
enabling riskier passes. The resultant behaviour, which is sufficiently generic
to be applicable to physical robot teams, increases the players' mobility and
achieves a better control of the field. The last presented version,
Gliders2d-v1.6, approaches the strength of Gliders2013, and outperforms
agent2d-3.1.1 by four goals per game on average. The sequential improvements
demonstrate how the methodology of human-based evolutionary computation can
markedly boost the overall performance with even a small number of controlled
steps.Comment: 12 pages, 1 figure, Gliders2d code releas
A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications
CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure
Recommended from our members
ISX-A Graphite Limiter Experiment
Graphite limiters were installed and tested in the ISX-A tokamak as part of the ISX-A surface physics program and the TFTR materials research program. The puropse of the experiment was to compare plasma performance using graphite limiters as opposed to the standard ISX-A stainless steel limiters. Heaters were installed in the graphite limiters so that the effects of operation at elevated temperatures could be evaluated
Clinical Implication of Targeting of Cancer Stem Cells
The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base
- …