1,791 research outputs found

    Correlations and the relativistic structure of the nucleon self-energy

    Get PDF
    A key point of Dirac Brueckner Hartree Fock calculations for nuclear matter is to decompose the self energy of the nucleons into Lorentz scalar and vector components. A new method is introduced for this decomposition. It is based on the dependence of the single-particle energy on the small component in the Dirac spinors used to calculate the matrix elements of the underlying NN interaction. The resulting Dirac components of the self-energy depend on the momentum of the nucleons. At densities around and below the nuclear matter saturation density this momentum dependence is dominated by the non-locality of the Brueckner G matrix. At higher densities these correlation effects are suppressed and the momentum dependence due to the Fock exchange terms is getting more important. Differences between symmetric nuclear matter and neutron matter are discussed. Various versions of the Bonn potential are considered.Comment: 18 pages LaTeX, including 6 figure

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Averaging kernels for DOAS total-column satellite retrievals

    Get PDF
    International audienceThe Differential Optical Absorption Spectroscopy (DOAS) method is used extensively to retrieve total column amounts of trace gases based on UV-visible measurements of satellite spectrometers, such as ERS-2 GOME. In practice the sensitivity of the instrument to the tracer density is strongly height dependent, especially in the troposphere. The resulting tracer profile dependence may introduce large systematic errors in the retrieved columns that are difficult to quantify without proper additional information, as provided by the averaging kernel (AK). In this paper we discuss the DOAS retrieval method in the context of the general retrieval theory as developed by Rodgers. An expression is derived for the DOAS AK for optically thin absorbers. It is shown that the comparison with 3D chemistry-transport models and independent profile measurements, based on averaging kernels, is no longer influenced by errors resulting from a priori profile assumptions. The availability of averaging kernel information as part of the total column retrieval product is important for the interpretation of the observations, and for applications like chemical data assimilation and detailed satellite validation studies

    Validation of a cost-effective alternative for a radiochromatography method to be used in a developing country

    Get PDF
    INTRODUCTION: The radiochemical purity (RCP) of technetium-99m labelled radiopharmaceuticals (RP) is important to ensure optimal scintigraphic image quality. In low-income settings, it may not be possible to use compendial analytical methods or expensive equipment for radiochemical purity analysis. All radiochemical analysis methods should however be validated against compendial or otherwise proven methods. To ensure the efficacy of RP prepared at Yaoundé General Hospital (YGH) Cameroon, this study cross-validated a cost-effective routine chromatographic method using a simple survey meter technique. A GMP-compliant method used at the University Medical Center Groningen (UMCG), the Netherlands was used as the comparator. METHODS: Sestamibi, HMDP and DMSA kits currently used at YGH were reconstituted at UMCG with about 2000 MBq of freshly eluted sodium pertechnetate as described by the manufacturer, and spiked with eluate of the same generator to obtain a range of impurity concentrations. Samples of technetium-99m RP were spotted on 1 × 10 cm iTLC-SG strips and developed in appropriate mobile phases. Each strip was first scanned on the chromatogram-scanner used at the UMCG (standard method), and immediately thereafter the strip was cut in two pieces and radioactivity from each portion was counted with a small survey meter from YGH. The percentage RCP for each TLC strip was calculated using both counting methods. Internationally recommended validation parameters and acceptance criteria were used. Student's paired t-test or ANOVA were used with 'no significant difference' designated at a 95% confidence-interval (P ≥ 0.05). Linearity of the survey meter was determined for Tc-99m. Readings obtained with the survey meter were also plotted against the scanner results. RESULTS AND DISCUSSION: The proposed method proved to be accurate (CV of mean RCP  0.05). LOD and LOQ were determined for the survey meter. Specificity depends on chemical separation. As we were validating the suitability of a method to quantify radioactivity, specificity was not included in the validation parameters. CONCLUSION: The proposed method compared well with the standard method and is suitable as a reliable low cost method for limited resource settings

    Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach

    Full text link
    We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudo-vector choice for the covariant representation of the T-matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T-matrix representation. Starting from a complete pseudo-vector representation of the T-matrix, which reproduces correctly the pseudo-vector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.Comment: 35 pages RevTex, 7 PS figures, replaced by a revised and extended versio

    Averaging kernels for DOAS total-column satellite retrievals

    Get PDF
    The Differential Optical Absorption Spectroscopy (DOAS) method is used extensively to retrieve total column amounts of trace gases based on UV-visible measurements of satellite spectrometers, such as ERS-2 GOME. In practice the sensitivity of the instrument to the tracer density is strongly height dependent, especially in the troposphere. The resulting tracer profile dependence may introduce large systematic errors in the retrieved columns that are difficult to quantify without proper additional information, as provided by the averaging kernel (AK). In this paper we discuss the DOAS retrieval method in the context of the general retrieval theory as developed by Rodgers. An expression is derived for the DOAS AK for optically thin absorbers. It is shown that the comparison with 3D chemistry-transport models and independent profile measurements, based on averaging kernels, is no longer influenced by errors resulting from a priori profile assumptions. The availability of averaging kernel information as part of the total column retrieval product is important for the interpretation of the observations, and for applications like chemical data assimilation and detailed satellite validation studies

    Peripheral Artery Disease Patients May Benefit More from Aggressive Secondary Prevention than Aneurysm Patients to Improve Survival

    Get PDF
    BACKGROUND AND AIMS: Although it has become clear that aneurysmal and occlusive arterial disease represent two distinct etiologic entities, it is still unknown whether the two vascular pathologies are prognostically different. We aim to assess the long-term vital prognosis of patients with abdominal aortic aneurysmal disease (AAA) or peripheral artery disease (PAD), focusing on possible differences in survival, prognostic risk profiles and causes of death. METHODS: Patients undergoing elective surgery for isolated AAA or PAD between 2003 and 2011 were retrospectively included. Differences in postoperative survival were determined using Kaplan-Meier and Cox regression analysis. Prognostic risk profiles were also established with Cox regression analysis. RESULTS: 429 and 338 patients were included in the AAA and PAD groups, respectively. AAA patients were older (71.7 vs. 63.3 years, p < 0.001), yet overall survival following surgery did not differ (HR: 1.16, 95% CI: 0.87-1.54). Neither was type of vascular disease associated with postoperative cardiovascular nor cancer-related death. However, in comparison with age- and gender-matched general populations, cardiovascular mortality was higher in PAD than AAA patients (48.3% vs. 17.3%). Survival of AAA and PAD patients was negatively affected by age, history of cancer and renal insufficiency. Additional determinants in the PAD group were diabetes and ischemic heart disease. CONCLUSIONS: Long-term survival after surgery for PAD and AAA is similar. However, overall life expectancy is significantly worse among PAD patients. The contribution of cardiovascular disease towards mortality in PAD patients warrants more aggressive secondary prevention to reduce cardiovascular mortality and improve longevity

    Coronary Revascularization Induces a Shift From Cardiac Toward Noncardiac Mortality Without Improving Survival in Vascular Surgery Patient

    Get PDF
    OBJECTIVE: Although evidence has shown that ischemic heart disease (IHD) in vascular surgery patients has a negative impact on the prognosis after surgery, it is unclear whether directed treatment of IHD may influence cause-specific and overall mortality. The objective of this study was to determine the prognostic implication of coronary revascularization (CR) on overall and cause-specific mortality in vascular surgery patients. METHODS: Patients undergoing surgery for abdominal aortic aneurysm, carotid artery stenosis, or peripheral artery disease in a university hospital in The Netherlands between January 2003 and December 2011 were retrospectively included. Survival estimates were obtained by Kaplan-Meier and Cox regression analysis. RESULTS: A total of 1104 patients were included. Adjusted survival analyses showed that IHD significantly increased the risk of overall mortality (hazard ratio [HR], 1.50; 95% confidence interval, 1.21-1.87) and cardiovascular death (HR, 1.93; 95% confidence interval, 1.35-2.76). Compared with those without CR, patients previously undergoing CR had similar overall mortality (HR, 1.38 vs 1.62; P = .274) and cardiovascular mortality (HR, 1.83 vs 2.02; P = .656). Nonrevascularized IHD patients were more likely to die of IHD (6.9% vs 35.7%), whereas revascularized IHD patients more frequently died of cardiovascular causes unrelated to IHD (39.1% vs 64.3%; P = .018). CONCLUSIONS: This study confirms the significance of IHD for postoperative survival of vascular surgery patients. CR was associated with lower IHD-related death rates. However, it failed to provide an overall survival benefit because of an increased rate of cardiovascular mortality unrelated to IHD. Intensification of secondary prevention regimens may be required to prevent this shift toward non-IHD-related death and thereby improve life expectancy

    Effective DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei

    Full text link
    A new decomposition of the Dirac structure of nucleon self-energies in the Dirac Brueckner-Hartree-Fock (DBHF) approach is adopted to investigate the equation of state for asymmetric nuclear matter. The effective coupling constants of σ\sigma , ω\omega , δ\delta and ρ\rho mesons with a density dependence in the relativistic mean field approach are deduced by reproducing the nucleon self-energy resulting from the DBHF at each density for symmetric and asymmetric nuclear matter. With these couplings the properties of finite nuclei are investigated. The agreement of charge radii and binding energies of finite nuclei with the experimental data are improved simultaneously in comparison with the projection method. It seems that the properties of finite nuclei are sensitive to the scheme used for the DBHF self-energy extraction. We may conclude that the properties of the asymmetric nuclear matter and finite nuclei could be well described by the new decomposition approach of the G matrix.Comment: 16 pages, 5 figure
    corecore