739 research outputs found

    Where is the Inner Edge of an Accretion Disk Around a Black Hole?

    Get PDF
    What is meant by the "inner edge" of an accretion disk around a black hole depends on the property that defines the edge. We discuss four such definitions using data from recent high-resolution numerical simulations. These are: the "turbulence edge", where flux-freezing becomes more important than turbulence in determining the magnetic field structure; the "stress edge", where plunging matter loses dynamical contact with the outer accretion flow; the "reflection edge", the smallest radius capable of producing significant X-ray reflection features; and the "radiation edge", the innermost place from which significant luminosity emerges. All these edges are dependent on the accretion rate and are non-axisymmetric and time-variable. Although all are generally located in the vicinity of the marginally stable orbit, significant displacements can occur, and data interpretations placing the disk edge precisely at this point can be misleading. If observations are to be used successfully as diagnostics of accretion in strong gravity, the models used to interpret them must take careful account of these distinctions.Comment: accepted by Ap.J., 26 p

    Chandra deep X-ray observation on the Galactic plane

    Full text link
    Using the Chandra ACIS-I instruments, we have carried out the deepest X-ray observation on a typical Galactic plane region at l 28.5 deg, where no discrete X-ray sources have been known previously. We have detected, as well as strong diffuse emission, 275 new point X-ray sources (4 sigma confidence) within two partially overlapping fields (~250 arcmin^2 in total) down to ~3 x 10^{-15} erg s^{-1} cm^{-2} (2 -- 10 keV) or ~ 7 x 10^{-16} erg s^{-1} cm^{-2} (0.5 -- 2 keV). We have studied spectral distribution of these point sources, and found that very soft sources detected only below ~ 3 keV are more numerous than hard sources detected only above ~ 3 keV. Only small number of sources are detected both in the soft and hard bands. Surface density of the hard sources is almost consistent with that at high Galactic regions, thus most of the hard sources are considered to be Active Galactic Nuclei seen through the milky way. On the other hand, some of the bright hard X-ray sources which show extremely flat spectra and iron line or edge features are considered to be Galactic, presumably quiescent dwarf novae. The soft sources show thermal spectra and small interstellar hydrogen column densities, and some of them exhibit X-ray flares. Therefore, most of the soft sources are probably X-ray active nearby late type stars.Comment: Contribution to the proceedings of the "New Visions of the X-Ray Universe in the XMM-Newton and Chandra Era" symposium at ESTEC, The Netherlands. 26-30 Nov. 200

    Detection of Low-Hard State Spectral and Timing Signatures from the Black Hole X-Ray Transient XTE J1650-500 at Low X-Ray Luminosities

    Full text link
    Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer, we have studied the black hole candidate (BHC) X-ray transient XTE J1650-500 near the end of its 2001-2002 outburst after its transition to the low-hard state at X-ray luminosities down to L = 1.5E34 erg/s (1-9 keV, assuming a source distance of 4 kpc). Our results include a characterization of the spectral and timing properties. At the lowest sampled luminosity, we used an 18 ks Chandra observation to measure the power spectrum at low frequencies. For the 3 epochs at which we obtained Chandra/RXTE observations, the 0.5-20 keV energy spectrum is consistent with a spectral model consisting of a power-law with interstellar absorption. We detect evolution in the power-law photon index from 1.66 +/- 0.05 to 1.93 +/- 0.13 (90% confidence errors), indicating that the source softens at low luminosities. The power spectra are characterized by strong (20-35% fractional rms) band-limited noise, which we model as a zero-centered Lorentzian. Including results from an RXTE study of XTE J1650-500 near the transition to the low-hard state by Kalemci et al. (2003), the half-width of the zero-centered Lorentzian (roughly where the band-limited noise cuts off) drops from 4 Hz at L = 7E36 erg/s (1-9 keV, absorbed) to 0.067 +/- 0.007 Hz at L = 9E34 erg/s to 0.0035 +/- 0.0010 Hz at the lowest luminosity. While the spectral and timing parameters evolve with luminosity, it is notable that the general shapes of the energy and power spectra remain the same, indicating that the source stays in the low-hard state. This implies that the X-ray emitting region of the system likely keeps the same overall structure, while the luminosity changes by a factor of 470. We discuss how these results may constrain theoretical black hole accretion models.Comment: 11 pages, accepted by ApJ after minor revision

    The Pattern of Correlated X-ray Timing and Spectral Behavior in GRS 1915+105

    Get PDF
    From data obtained from the PCA in the 2-11 keV and 11-30.5 keV energy range, GRS 1915+105 is seen during RXTE observations between 1996 May and October on two separate branches in a hardness intensity diagram. On the hard branch, GRS 1915+105 exhibits narrow quasi-periodic oscillations ranging from 0.5 to 6 Hz with Δνν0.2{\Delta \nu \over \nu} \sim 0.2. The QPOs are observed over intensities ranging from about 6,000 to 20,000 counts s1^{-1} in the 2 - 12.5 keV energy band, indicating a strong dependence on source intensity. Strong harmonics are seen, especially, at lower frequencies. As the QPO frequency increases, the harmonic feature weakens and disappears. On the soft branch, narrow QPOs are absent and the low frequency component of the power density spectrum is approximated by a power-law, with index 1.25\sim -1.25 for low count rates and 1.5\sim -1.5 for high count rates (\gta 18000 cts/s). Occasionally, a broad peaked feature in the 1-6 Hz frequency range is also observed on this branch. The source was probably in the very high state similar to those of other black hole candidates. Thermal-viscous instabilities in accretion disk models do not predict the correlation of the narrow QPO frequency and luminosity unless the fraction of luminosity from the disk decreases with the total luminosity.Comment: ApJ Lett accepte

    A Chandra Study of the Dense Globular Cluster Terzan 5

    Full text link
    We report a Chandra ACIS-I observation of the dense globular cluster Terzan 5. The previously known transient low-mass x-ray binary (LMXB) EXO 1745-248 in the cluster entered a rare high state during our August 2000 observation, complicating the analysis. Nevertheless nine additional sources clearly associated with the cluster are also detected, ranging from L_X(0.5-2.5 keV)=5.6*10^{32} down to 8.6*10^{31} ergs/s. Their X-ray colors and luminosities, and spectral fitting, indicate that five of them are probably cataclysmic variables, and four are likely quiescent LMXBs containing neutron stars. We estimate the total number of sources between L_X(0.5-2.5 keV)=10^{32} and 10^{33} ergs/s as 11.4^{+4.7}_{-1.8} by the use of artificial point source tests, and note that the numbers of X-ray sources are similar to those detected in NGC 6440. The improved X-ray position allowed us to identify a plausible infrared counterpart to EXO 1745-248 on our 1998 Hubble Space Telescope NICMOS images. This blue star (F110W=18.48, F187W=17.30) lies within 0.2'' of the boresighted LMXB position. Simultaneous Rossi X-ray Timing Explorer (RXTE) spectra, combined with the Chandra spectrum, indicate that EXO 1745-248 is an ultracompact binary system, and show a strong broad 6.55 keV iron line and an 8 keV smeared reflection edge.Comment: 18 pages, 8 figures, accepted to Ap

    Temporal Properties of Cygnus X-1 During the Spectral Transitions

    Get PDF
    We report the results from our timing analysis of 15 RXTE observations of Cygnus X-1 throughout its 1996 spectral transitions. The entire period can be divided into 3 distinct phases: (1) transition from the hard to soft state, (2) soft state, and (3) transition from the soft state back to the hard state. The observed X-ray properties in phases 1 and 3 are remarkably similar, suggesting that the same physical processes are likely involved in triggering such transitions. The power density spectrum (PDS) during the transition can be characterized by a red noise component, followed by a white noise component which extends to roughly 1-3 Hz where it is cut off, and a steeper power law at higher frequencies. The X-ray flux also exhibits apparent quasi-periodic oscillation (QPO) with the centroid frequency varying in the range of 4-12 Hz. The QPO shows no correlation with the source flux, but becomes more prominent at higher energies. This type of PDS bears resemblance to that of other black hole candidates often observed in a so-called very high state, although the origin of the observed QPO may be very different. The low-frequency red noise has not been observed in the hard state, thus seems to be positively correlated with the disk mass accretion rate which is presumably low in the hard state and high in the soft state; in fact, it completely dominates the PDS in the soft state. In the framework of thermalComptonization models, Cui et al. (see astro-ph/9610071 and astro-ph/9610072) speculated that the difference in the observed spectral and timing properties between the hard and soft states is due to the presence of a ``fluctuating'' Comptonizing corona during the transition. Here we present the measured hard X-ray time lags and coherence functions between various energy bands, and show that the results strongly support such a scenario.Comment: AASTex file. 29 pages including 11 figures. To appear in Ap

    X-ray Nova XTE J1550-564: RXTE Spectral Observations

    Get PDF
    Excellent coverage of the 1998 outburst of the X-ray Nova XTE J1550-564 was provided by the Rossi X-ray Timing Explorer. XTE J1550-564 exhibited an intense (6.8 Crab) flare on 1998 September 19 (UT), making it the brightest new X-ray source observed with RXTE. We present a spectral analysis utilizing 60 Proportional Counter Array spectra from 2.5-20 keV spanning 71 days, and a nearly continuous All Sky Monitor light curve. The spectra were fit to a model including multicolor blackbody disk and power-law components. XTE J1550-564 is observed in the very high, high/soft, and intermediate canonical outburst states of Black Hole X-ray Novae.Comment: 14 pages including 1 table and 4 figures, Accepted to ApJ Letter

    Hall Effect in the mixed state of moderately clean superconductors

    Get PDF
    The Hall conductivity in the mixed state of a clean (lξ0l \gg \xi_0) type-II s-wave superconductor is determined from a microscopic calculation within a quasiclassical approximation. We find that below the superconducting transition the contribution to the transverse conductivity due to dynamical fluctuations of the order parameter is compensated by the modification of the quasiparticle contribution. In this regime the nonlinear behaviour of the Hall angle is governed by the change in the effective quasiparticle scattering rate due to the reduction in the density of states at the Fermi level. The connection with experimental results is discussed

    Geometrically Frustrated Crystals: Elastic Theory and Dislocations

    Full text link
    Elastic theory of ring-(or cylinder-)shaped crystals is constructed and the generation of edge dislocations due to geometrical frustration caused by the bending is studied. The analogy to superconducting (or superfluid) vortex state is pointed out and the phase diagram of the ring-crystal, which depends on radius and thickness, is discussed.Comment: 4 pages, 3 figure
    corecore