58 research outputs found

    Markov analysis of stochastic resonance in a periodically driven integrate-fire neuron

    Full text link
    We model the dynamics of the leaky integrate-fire neuron under periodic stimulation as a Markov process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each spike made in earlier work and thus solves the long-standing reset problem. The neuron exhibits stochastic resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized to other periodically driven stochastic processes containing a reset mechanism.Comment: 23 pages, 10 figure

    Switching Time Statistics for Driven Neuron Models: Analytic Expressions versus Numerics

    Full text link
    Analytical expressions are put forward to investigate the forced spiking activity of abstract neuron models such as the driven leaky integrate-and-fire (LIF) model. The method is valid in a wide parameter regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The novel approximation is based on a discrete state Markovian modeling of the full dynamics with time-dependent rates. The scheme yields very good agreement with numerical Langevin and Fokker-Planck simulations of the full non-stationary dynamics for both, the first-passage time statistics and the interspike interval (residence time) distributions.Comment: 4 pages, 4 figures, RevTeX4 used, final versio

    Mesonic Chiral Rings in Calabi-Yau Cones from Field Theory

    Get PDF
    We study the half-BPS mesonic chiral ring of the N=1 superconformal quiver theories arising from N D3-branes stacked at Y^pq and L^abc Calabi-Yau conical singularities. We map each gauge invariant operator represented on the quiver as an irreducible loop adjoint at some node, to an invariant monomial, modulo relations, in the gauged linear sigma model describing the corresponding bulk geometry. This map enables us to write a partition function at finite N over mesonic half-BPS states. It agrees with the bulk gravity interpretation of chiral ring states as cohomologically trivial giant gravitons. The quiver theories for L^aba, which have singular base geometries, contain extra operators not counted by the naive bulk partition function. These extra operators have a natural interpretation in terms of twisted states localized at the orbifold-like singularities in the bulk.Comment: Latex, 25pgs, 12 figs, v2: minor clarification

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=1−3M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure

    Why Are Computational Neuroscience and Systems Biology So Separate?

    Get PDF
    Despite similar computational approaches, there is surprisingly little interaction between the computational neuroscience and the systems biology research communities. In this review I reconstruct the history of the two disciplines and show that this may explain why they grew up apart. The separation is a pity, as both fields can learn quite a bit from each other. Several examples are given, covering sociological, software technical, and methodological aspects. Systems biology is a better organized community which is very effective at sharing resources, while computational neuroscience has more experience in multiscale modeling and the analysis of information processing by biological systems. Finally, I speculate about how the relationship between the two fields may evolve in the near future

    Balancing Feed-Forward Excitation and Inhibition via Hebbian Inhibitory Synaptic Plasticity

    Get PDF
    It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis shows that inhibitory Hebbian plasticity generates ‘negative feedback’ that balances excitation and inhibition, which contrasts with the ‘positive feedback’ of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the sensitivity of the learning dynamics to the correlation structure of the excitatory inputs

    A reafferent and feed-forward model of song syntax generation in the Bengalese finch

    Get PDF
    Adult Bengalese finches generate a variable song that obeys a distinct and individual syntax. The syntax is gradually lost over a period of days after deafening and is recovered when hearing is restored. We present a spiking neuronal network model of the song syntax generation and its loss, based on the assumption that the syntax is stored in reafferent connections from the auditory to the motor control area. Propagating synfire activity in the HVC codes for individual syllables of the song and priming signals from the auditory network reduce the competition between syllables to allow only those transitions that are permitted by the syntax. Both imprinting of song syntax within HVC and the interaction of the reafferent signal with an efference copy of the motor command are sufficient to explain the gradual loss of syntax in the absence of auditory feedback. The model also reproduces for the first time experimental findings on the influence of altered auditory feedback on the song syntax generation, and predicts song- and species-specific low frequency components in the LFP. This study illustrates how sequential compositionality following a defined syntax can be realized in networks of spiking neurons
    • …
    corecore