8,655 research outputs found
The lattice QCD simulation of the quark-gluon mixed condensate g<\bar{q} \sigma G q> at finite temperature and the phase transition of QCD
The thermal effects on the quark-gluon mixed condensate g<\bar{q} \sigma G
q>, which is another chiral order parameter, are studied using the SU(3)c
lattice QCD with the Kogut-Susskind fermion at the quenched level. We perform
the accurate measurement of the mixed condensate as well as the quark
condensate for 0MeV<=T<=500MeV. We observe the sharp decrease of both the
condensates around T_c \simeq 280MeV, while the thermal effects below T_c are
found to be weak. We also find that the ratio m_0^2 = g<\bar{q} \sigma G
q>/ is almost independent of the temperature even in the very
vicinity of T_c, which indicates that the two condensates have nontrivial
similarity in the chiral behaviors. We also present the correlation between the
condensates and the Polyakov loop to understand the vacuum structure of QCD.Comment: Talk given at the XXII International Symposium on Lattice Field
Theory (LATTICE 2004), Fermilab, Batavia, Illinois, USA, 21-26 June 2004,
Lattice2004(non-zero), 3 pages, 3 figure
Comment: Classifier Technology and the Illusion of Progress
Comment on Classifier Technology and the Illusion of Progress
[math.ST/0606441]Comment: Published at http://dx.doi.org/10.1214/088342306000000042 in the
Statistical Science (http://www.imstat.org/sts/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Nuclear force in Lattice QCD
We perform the quenched lattice QCD analysis on the nuclear force
(baryon-baryon interactions). We employ lattice at
( fm) with the standard gauge action and the Wilson quark action
with the hopping parameters , and generate about
200 gauge configurations. We measure the temporal correlators of the two-baryon
system which consists of heavy-light-light quarks. We extract the inter-baryon
force as a function of the relative distance . We also evaluate the
contribution to the nuclear force from each ``Feynman diagram'' such as the
quark-exchange diagram individually, and single out the roles of Pauli-blocking
effects or quark exchanges in the inter-baryon interactions.Comment: Presented at Particles and Nuclei International Conference (PANIC05),
Santa Fe, NM, Oct. 24-28, 2005; 3 pages, 2figure
Single-cycle THz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3
Using the tilted-pulse-intensity-front scheme, we generate single-cycle
terahertz (THz) pulses by optical rectification of femtosecond laser pulses in
LiNbO3. In the THz generation setup, the condition that the image of the
grating coincides with the tilted-optical-pulse front is fulfilled to obtain
optimal THz beam characteristics and pump-to-THz conversion efficiency. The
designed focusing geometry enables tight focus of the collimated THz beam with
a spot size close to the diffraction limit, and the maximum THz electric field
of 1.2 MV/cm is obtained
Survival of charmonia above Tc in anisotropic lattice QCD
We find a strong evidence for the survival of and as
spatially-localized (quasi-)bound states above the QCD critical
temperature , by investigating the boundary-condition dependence of their
energies and spectral functions. In a finite-volume box, there arises a
boundary-condition dependence for spatially spread states, while no such
dependence appears for spatially compact states. In lattice QCD, we find almost
{\it no} spatial boundary-condition dependence for the energy of the
system in and channels for . We also
investigate the spectral function of charmonia above in lattice QCD using
the maximum entropy method (MEM) in terms of the boundary-condition dependence.
There is {\it no} spatial boundary-condition dependence for the low-lying peaks
corresponding to and around 3GeV at . These facts
indicate the survival of and as compact
(quasi-)bound states for .Comment: 4 pages, 1 figur
Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet
Anti-decuplet penta-quark baryon is studied with the quenched anisotropic
lattice QCD for accurate measurement of the correlator. Both the positive and
negative parity states are studied using a non-NK type interpolating field with
I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state
is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified
with the experimentally observed Theta^+(1540). The lowest negative parity
state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the
empirical value. To confirm that this state is a compact 5Q resonance, a new
method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis
shows that the observed state in the negative parity channel is an NK
scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004
at SPring-8, Japan, 8 pages, 7 figures, 2 table
CP Violations in Lepton Number Violation Processes and Neutrino Oscillations
We examine the constraints on the MNS lepton mixing matrix from the present
and future experimental data of the neutrino oscillation and lepton number
violation processes. We introduce a graphical representation of the CP
violation phases which appear in the lepton number violation processes such as
neutrinoless double beta decay, the conversion, and the K decay,
Using this graphical representation, we derive the
constraints on the CP violation phases in the lepton sector.Comment: 21pp, REVTeX, 9 Figure
Spin 3/2 Penta-quarks in anisotropic lattice QCD
A high-precision mass measurement for the pentaquark (5Q) Theta^+ in
J^P=3/2^{\pm} channel is performed in anisotropic quenched lattice QCD using a
large number of gauge configurations as N_{conf}=1000. We employ the standard
Wilson gauge action at beta=5.75 and the O(a) improved Wilson (clover) quark
action with kappa=0.1210(0.0010)0.1240 on a 12^3 \times 96 lattice with the
renormalized anisotropy as a_s/a_t = 4. The Rarita-Schwinger formalism is
adopted for the interpolating fields. Several types of the interpolating fields
with isospin I=0 are examined such as (a) the NK^*-type, (b) the
(color-)twisted NK^*-type, (c) a diquark-type. The chiral extrapolation leads
to only massive states, i.e., m_{5Q} \simeq 2.1-2.2 GeV in J^P=3/2^- channel,
and m_{5Q} = 2.4-2.6 GeV in J^P=3/2^+ channel. The analysis with the hybrid
boundary condition(HBC) is performed to investigate whether these states are
compact 5Q resonances or not. No low-lying compact 5Q resonance states are
found below 2.1GeV.Comment: 15 pages, 6 figures, 4 table
- âŠ