7,781 research outputs found

    Spin correlations and velocity-scaling in color-octet NRQCD matrix elements

    Full text link
    We compute spin-dependent decay matrix elements for S-wave charmonium and bottomonium in lattice nonrelativistic quantum chromodynamics (NRQCD). Particular emphasis is placed upon the color-octet matrix elements, since the corresponding production matrix elements are expected to appear in the dominant contributions to the production cross sections at large transverse momenta. We use three slightly different versions of the heavy-quark lattice Green's functions in order to minimize the contributions that scale as powers of the ultraviolet cutoff. The lattice matrix elements that we calculate obey the hierarchy that is suggested by the velocity-scaling rules of NRQCD.Comment: 25 pages, 2 figures, 2 tables, further discussion of effective lattice cutoffs and uncertainties, additional minor revisions, version to be published in Phys. Rev.

    Thermodynamics of lattice QCD with 2 sextet quarks on N_t=8 lattices

    Full text link
    We continue our lattice simulations of QCD with 2 flavours of colour-sextet quarks as a model for conformal or walking technicolor. A 2-loop perturbative calculation of the β\beta-function which describes the evolution of this theory's running coupling constant predicts that it has a second zero at a finite coupling. This non-trivial zero would be an infrared stable fixed point, in which case the theory with massless quarks would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR fixed point means that there is a range of couplings for which the running coupling evolves very slowly, i.e. it 'walks'. We are simulating the lattice version of this theory with staggered quarks at finite temperature studying the changes in couplings at the deconfinement and chiral-symmetry restoring transitions as the temporal extent (NtN_t) of the lattice, measured in lattice units, is increased. Our earlier results on lattices with Nt=4,6N_t=4,6 show both transitions move to weaker couplings as NtN_t increases consistent with walking behaviour. In this paper we extend these calculations to Nt=8N_t=8. Although both transition again move to weaker couplings the change in the coupling at the chiral transition from Nt=6N_t=6 to Nt=8N_t=8 is appreciably smaller than that from Nt=4N_t=4 to Nt=6N_t=6. This indicates that at Nt=4,6N_t=4,6 we are seeing strong coupling effects and that we will need results from Nt>8N_t > 8 to determine if the chiral-transition coupling approaches zero as Nt→∞N_t \rightarrow \infty, as needed for the theory to walk.Comment: 21 pages Latex(Revtex4) source with 4 postscript figures. v2: added 1 reference. V3: version accepted for publication, section 3 restructured and interpretation clarified. Section 4 future plans for zero temperature simulations clarifie

    First principles study of intrinsic point defects in hexagonal barium titanate

    Get PDF
    Density functional theory (DFT) calculations have been used to study the nature of intrinsic defects in the hexagonal polymorph of barium titanate. Defect formation energies are derived for multiple charge states and due consideration is given to finite-size effects (elastic and electrostatic) and the band gap error in defective cells. Correct treatment of the chemical potential of atomic oxygen means that it is possible to circumvent the usual errors associated with the inaccuracy of DFT calculations on the oxygen dimer. Results confirm that both mono- and di-vacancies exist in their nominal charge states over the majority of the band gap. Oxygen vacancies are found to dominate the system in metal-rich conditions with face sharing oxygen vacancies being preferred over corner sharing oxygen vacancies. In oxygen-rich conditions, the dominant vacancy found depends on the Fermi level. Binding energies also show the preference for metal-oxygen di-vacancy formation. Calculated equilibrium concentrations of vacancies in the system are presented for numerous temperatures. Comparisons are drawn with the cubic polymorph as well as with previous potential-based simulations and experimental results

    Learning associations between clinical information and motion-based descriptors using a large scale MR-derived cardiac motion atlas

    Full text link
    The availability of large scale databases containing imaging and non-imaging data, such as the UK Biobank, represents an opportunity to improve our understanding of healthy and diseased bodily function. Cardiac motion atlases provide a space of reference in which the motion fields of a cohort of subjects can be directly compared. In this work, a cardiac motion atlas is built from cine MR data from the UK Biobank (~ 6000 subjects). Two automated quality control strategies are proposed to reject subjects with insufficient image quality. Based on the atlas, three dimensionality reduction algorithms are evaluated to learn data-driven cardiac motion descriptors, and statistical methods used to study the association between these descriptors and non-imaging data. Results show a positive correlation between the atlas motion descriptors and body fat percentage, basal metabolic rate, hypertension, smoking status and alcohol intake frequency. The proposed method outperforms the ability to identify changes in cardiac function due to these known cardiovascular risk factors compared to ejection fraction, the most commonly used descriptor of cardiac function. In conclusion, this work represents a framework for further investigation of the factors influencing cardiac health.Comment: 2018 International Workshop on Statistical Atlases and Computational Modeling of the Hear

    Random polynomials, random matrices, and LL-functions

    Full text link
    We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.Comment: Added background material. Final version. To appear in Nonlinearit
    • …
    corecore