144 research outputs found

    Two gamma quarkonium and positronium decays with Two-Body Dirac equations of constraint dynamics

    Get PDF
    Two-Body Dirac equations of constraint dynamics provide a covariant framework to investigate the problem of highly relativistic quarks in meson bound states. This formalism eliminates automatically the problems of relative time and energy, leading to a covariant three dimensional formalism with the same number of degrees of freedom as appears in the corresponding nonrelativistic problem. It provides bound state wave equations with the simplicity of the nonrelativistic Schroedinger equation. Unlike other three-dimensional truncations of the Bethe-Salpeter equation, this covariant formalism has been thoroughly tested in nonperturbatives contexts in QED, QCD, and nucleon-nucleon scattering. Here we continue the important studies of this formalism by extending a method developed earlier for positronium decay into two photons to tests on the sixteen component quarkonium wave function solutions obtained in meson spectroscopy. We examine positronium decay and then the two-gamma quarkonium decays of eta_c, eta'_c, chi_0c, chi_2c, and pi-zero The results for the pi-zero, although off the experimental rate by 13%, is much closer than the usual expectations from a potential model.Comment: 4 pages. Presented at Second Meeting of APS Topical Group on Hadron Physics, Nashville, TN, Oct 22-24. Proceedings to be published by Journal of Physics (UK), Conference Serie

    The Relativistic N-body Problem in a Separable Two-Body Basis

    Full text link
    We use Dirac's constraint dynamics to obtain a Hamiltonian formulation of the relativistic N-body problem in a separable two-body basis in which the particles interact pair-wise through scalar and vector interactions. The resultant N-body Hamiltonian is relativistically covariant. It can be easily separated in terms of the center-of-mass and the relative motion of any two-body subsystem. It can also be separated into an unperturbed Hamiltonian with a residual interaction. In a system of two-body composite particles, the solutions of the unperturbed Hamiltonian are relativistic two-body internal states, each of which can be obtained by solving a relativistic Schr\"odinger-like equation. The resultant two-body wave functions can be used as basis states to evaluate reaction matrix elements in the general N-body problem. We prove a relativistic version of the post-prior equivalence which guarantees a unique evaluation of the reaction matrix element, independent of the ways of separating the Hamiltonian into unperturbed and residual interactions. Since an arbitrary reaction matrix element involves composite particles in motion, we show explicitly how such matrix elements can be evaluated in terms of the wave functions of the composite particles and the relevant Lorentz transformations.Comment: 42 pages, 2 figures, in LaTe

    Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments

    Full text link
    A large number of treatments of the meson spectrum have been tried that consider mesons as quark - anti quark bound states. Recently, we used relativistic quantum "constraint" mechanics to introduce a fully covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure functions as a "quantum mechanical transform of Bethe-Salpeter equation". Here, we test its spectral fits against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and the popular semi-relativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and does so with the smallest number of interaction functions without additional cutoff parameters necessary to make other approaches numerically tractable. We discuss the distinguishing features of our model that may account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings that are crucial for its success when solved nonperturbatively for the analogous two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content

    A Tale of Three Equations: Breit, Eddington-Guant, and Two-Body Dirac

    Get PDF
    G.Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit's version of retardation.Comment: 15 pages latex, published in Foundations of Physics, Vol 27, 67 (1997

    Relativistic Modification of the Gamow Factor

    Get PDF
    In processes involving Coulomb-type initial- and final-state interactions, the Gamow factor has been traditionally used to take into account these additional interactions. The Gamow factor needs to be modified when the magnitude of the effective coupling constant increases or when the velocity increases. For the production of a pair of particles under their mutual Coulomb-type interaction, we obtain the modification of the Gamow factor in terms of the overlap of the Feynman amplitude with the relativistic wave function of the two particles. As a first example, we study the modification of the Gamow factor for the production of two bosons. The modification is substantial when the coupling constant is large.Comment: 13 pages, in LaTe

    Relativistic Corrections in a Three-Boson System of Equal Masses

    Full text link
    Three-body systems of scalar bosons are described in the framework of relativistic constraint dynamics. With help of a change of variables followed by a change of wave function, two redundant degrees of freedom get eliminated and the mass-shell constraints can be reduced to a three-dimensional eigenvalue problem. In general, this problem is complicated, but for three equal masses a drastic simplification arises at the first post-Galilean order: the reduced wave equation becomes tractable, and we can compute a first-order correction beyond the nonrelativistic limit. The harmonic interaction is displayed as a toy model.Comment: 16 pages, no figure. Several points clarified, one typo corrected. References added. To appear in Physical Review

    Relativistic Generalization of the Gamow Factor for Fermion Pair Production or Annihilation

    Full text link
    In the production or annihilation of a pair of fermions, the initial-state or final-state interactions often lead to significant effects on the reaction cross sections. For Coulomb-type interactions, the Gamow factor has been traditionally used to take into account these effects. However the Gamow factor needs to be modified when the magnitude of the coupling constant or the relative velocity of two particles increases. We obtain the relativistic generalization of the Gamow factor in terms of the overlap of the Feynman amplitude with the relativistic wave function of two fermions with an attractive Coulomb-type interaction. An explicit form of the corrective factor is presented for the spin-singlet S-wave state. While the corrective factor approaches the Gamow factor in the non-relativistic limit, we found that the Gamow factor significantly over-estimates the effects when the coupling constant or the velocity is large.Comment: 16 pages, 4 figures in LaTe

    Correction Factors for Reactions involving Quark-Antiquark Annihilation or Production

    Full text link
    In reactions with qqˉq \bar q production or qqˉq\bar q annihilation, initial- and final-state interactions give rise to large corrections to the lowest-order cross sections. We evaluate the correction factor first for low relative kinetic energies by studying the distortion of the relative wave function. We then follow the procedure of Schwinger to interpolate this result with the well-known perturbative QCD vertex correction factors at high energies, to obtain an explicit semi-empirical correction factor applicable to the whole range of energies. The correction factor predicts an enhancement for qqˉq\bar q in color-singlet states and a suppression for color-octet states, the effect increasing as the relative velocity decreases. Consequences on dilepton production in the quark-gluon plasma, the Drell-Yan process, and heavy quark production processes are discussed.Comment: 25 pages (REVTeX), includes 2 uuencoded compressed postscript figure
    • …
    corecore