1,349 research outputs found

    Entropy inequalities from reflection positivity

    Full text link
    We investigate the question of whether the entropy and the Renyi entropies of the vacuum state reduced to a region of the space can be represented in terms of correlators in quantum field theory. In this case, the positivity relations for the correlators are mapped into inequalities for the entropies. We write them using a real time version of reflection positivity, which can be generalized to general quantum systems. Using this generalization we can prove an infinite sequence of inequalities which are obeyed by the Renyi entropies of integer index. There is one independent inequality involving any number of different subsystems. In quantum field theory the inequalities acquire a simple geometrical form and are consistent with the integer index Renyi entropies being given by vacuum expectation values of twisting operators in the Euclidean formulation. Several possible generalizations and specific examples are analyzed.Comment: Significantly enlarged and corrected version. Counterexamples found for the most general form of the inequalities. V3: minor change

    The logic of causally closed spacetime subsets

    Full text link
    The causal structure of space-time offers a natural notion of an opposite or orthogonal in the logical sense, where the opposite of a set is formed by all points non time-like related with it. We show that for a general space-time the algebra of subsets that arises from this negation operation is a complete orthomodular lattice, and thus has several of the properties characterizing the algebra physical propositions in quantum mechanics. We think this fact could be used to investigate causal structure in an algebraic context. As a first step in this direction we show that the causal lattice is in addition atomic, find its atoms, and give necesary and sufficient conditions for ireducibility.Comment: 17 pages, 8 figure

    Mutual information challenges entropy bounds

    Full text link
    We consider some formulations of the entropy bounds at the semiclassical level. The entropy S(V) localized in a region V is divergent in quantum field theory (QFT). Instead of it we focus on the mutual information I(V,W)=S(V)+S(W)-S(V\cup W) between two different non-intersecting sets V and W. This is a low energy quantity, independent of the regularization scheme. In addition, the mutual information is bounded above by twice the entropy corresponding to the sets involved. Calculations of I(V,W) in QFT show that the entropy in empty space cannot be renormalized to zero, and must be actually very large. We find that this entropy due to the vacuum fluctuations violates the FMW bound in Minkowski space. The mutual information also gives a precise, cutoff independent meaning to the statement that the number of degrees of freedom increases with the volume in QFT. If the holographic bound holds, this points to the essential non locality of the physical cutoff. Violations of the Bousso bound would require conformal theories and large distances. We speculate that the presence of a small cosmological constant might prevent such a violation.Comment: 10 pages, 2 figures, minor change
    • …
    corecore