3,276 research outputs found
A Fermi Fluid Description of the Half-Filled Landau Level
We present a many-body approach to calculate the ground state properties of a
system of electrons in a half-filled Landau level. Our starting point is a
simplified version of the recently proposed trial wave function where one
includes the antisymmetrization operator to the bosonic Laughlin state. Using
the classical plasma analogy, we calculate the pair-correlation function, the
static structure function and the ground state energy in the thermodynamic
limit. These results are in good agreement with the expected behavior at
.Comment: 4 pages, REVTEX, and 4 .ps file
Effective mass of composite fermion: a phenomenological fit in with anomalous propagation of surface acoustic wave
We calculate the conductivity associated with the anomalous propagation of a
surface acoustic wave above a two-dimensional electron gas at .
Murthy-Shankar's middle representation is adopted and a contribution to the
response functions beyond the random phase approximation has been taken into
account. We give a phenomenological fit for the effective mass of composite
fermion in with the experimental data of the anomalous propagation of surface
acoustic wave at and find the phenomenological value of the effective
mass is several times larger than the theoretical value
derived from the Hartree-Fock approximation. We
compare our phenomenologically fitting composite fermion effective mass with
those appeared in the measurements of the activation energy and the
Shubnikov-de Haas effect and find that our result is fairly reasonable.Comment: 8 pages, 5 figures, the longer version of cond-mat/9801131 with
crucial corrections, accepted for publication by PR
The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus
Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)
Diffusion Thermopower at Even Denominator Fractions
We compute the electron diffusion thermopower at compressible Quantum Hall
states corresponding to even denominator fractions in the framework of the
composite fermion approach. It is shown that the deviation from the linear low
temperature behavior of the termopower is dominated by the logarithmic
temperature corrections to the conductivity and not to the thermoelectric
coefficient, although such terms are present in both quantities. The enhanced
magnitude of this effect compared to the zero field case may allow its
observation with the existing experimental techniques.Comment: Latex, 12 pages, Nordita repor
Weiss Oscillations in Surface Acoustic Wave Propagation
The interaction of a surface acoustic wave (SAW) with a a two-dimensional
electron gas in a periodic electric potential and a classical magnetic field is
considered. We calculate the attenuation of the SAW and its velocity change and
show that these quantities exhibit Weiss oscillations.Comment: 4 pages REVTEX, 2 figures included as eps file
Transition from an electron solid to the sequence of fractional quantum Hall states at very low Landau level filling factor
At low Landau level filling of a two-dimensional electron system, typically
associated with the formation of an electron crystal, we observe local minima
in Rxx at filling factors nu=2/11, 3/17, 3/19, 2/13, 1/7, 2/15, 2/17, and 1/9.
Each of these developing fractional quantum Hall (FQHE) states appears only
above a filling factor-specific temperature. This can be interpreted as the
melting of an electron crystal and subsequent FQHE liquid formation. The
observed sequence of FQHE states follow the series of composite fermion states
emanating from nu=1/6 and nu=1/8
Specific Heat Study on a Novel Spin-Gapped System : (CH_3)_2NH_2CuCl_3
Specific heat measurements down to 120mK have been performed on a
quasi-one-dimensional spin-gapped system (CH)NHCuCl in
a magnetic field up to 8 T. This compound has a characteristic magnetization
curve which shows a gapless ground state and a plateau at 1/2 of the saturation
value. We have observed a spontaneous antiferromagnetic ordering and a
field-induced one below and above the 1/2 plateau field range, respectively.
The field versus temperature phase diagram is quite unusual and completely
different from those of the other quantum spin systems investigated so far. In
the plateau field range, a double-structure in the specific heat is observed,
reflecting the coexistence of ferromagnetic and antiferromagnetic excitations.
These behaviors are discussed on the basis of a recently proposed novel quantum
spin chain model consisting of weakly coupled ferromagnetic and
antiferromagnetic dimers.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp
Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the permanent centers of action atmosphere and the displacements of the permanent centers of action
This paper attempts to interpret, from a single point of view, several at first sight independent phenomena brought into focus through the synoptic investigations carried on at the Massachusetts Institute of Technology during the last few years…
Composite fermions close to the one-half filling of the lowest Landau level revisited
By strictly adhering to the microscopic theory of composite fermions for the
Landau-level filling fractions nu_e = p/(2 p + 1), we reproduce, with
remarkable accuracy, the surface-acoustic-wave (SAW)-based experimental results
by Willett and co-workers concerning two-dimensional electron systems with nu_e
close to 1/2. Our results imply that the electron band mass m_b, as distinct
from the composite fermion mass m_*, must undergo a substantial increase under
the conditions corresponding to nu_e approximately equal to 1/2. In view of the
relatively low aerial electronic densities n_e to which the underlying SAW
experiments correspond, our finding conforms with the experimental results by
Shashkin et al. [Phys. Rev. B 66, 073303 (2002)], concerning two-dimensional
electrons in silicon, that signal sharp increase in m_b for n_e decreasing
below approximately 2 x 10^{11} cm^{-2}. We further establish that a finite
mean-free path l_0 is essential for the observed linearity of the longitudinal
conductivity sigma_{xx}(q) as deduced from the SAW velocity shifts.Comment: 5 pages, 2 postscript figure
Effective Mass of the Four Flux Composite Fermion at
We have measured the effective mass () of the four flux composite
fermion at Landau level filling factor (CF), using the
activation energy gaps at the fractional quantum Hall effect (FQHE) states
= 2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de
Haas (SdH) oscillations around . We find that the energy gaps show a
linear dependence on the effective magnetic field (), and from this linear dependence we obtain and
a disorder broadening 1 K for a sample of density /cm. The deduced from the temperature dependence of
the SdH effect shows large differences for and . For
, . It scales as with the mass
derived from the data around and shows an increase in as , resembling the findings around . For ,
increases rapidly with increasing and can be described by . This anomalous dependence on is
precursory to the formation of the insulating phase at still lower filling.Comment: 5 pages, 3 figure
- …