331 research outputs found

    Long-Range Hydrophobic Attraction Between Graphene and Water/Oil Interfaces

    Full text link
    Long-range hydrophobic attractions between mesoscopic surfaces in water play an important role in many colloid and interface phenomena. Despite being studied by several approaches, the origin of these forces has yet to be adequately explained. While previous research has focused on solid/water/solid and solid/water/air scenarios, we investigated a solid/water/liquid situation to gain additional insight. We directly measured the long-range interactions between a solid and a hydrophobic liquid separated by water using force spectroscopy, where colloidal probes were coated with graphene oxide (GO) to interact with immobilized heptane droplets in water. We detected attractions with a range of ~0.5 {\mu}m that cannot be explained by standard Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. When the GO was reduced to rGO to become more hydrophobic, these forces increased in strength and ranged up to 1.2 {\mu}m. This suggests that the observed attractions result from long-range hydrophobic forces. Based on our results, we propose air bubbles attached to the colloidal probe and molecular rearrangement at the water/oil interface as possible origins of the observed interactions. This knowledge will be useful to understand and motivate the formation of emulsions using 2D materials and other amphiphilic/hydrophobic particles

    Cones, pringles, and grain boundary landscapes in graphene topology

    Full text link
    A polycrystalline graphene consists of perfect domains tilted at angle {\alpha} to each other and separated by the grain boundaries (GB). These nearly one-dimensional regions consist in turn of elementary topological defects, 5-pentagons and 7-heptagons, often paired up into 5-7 dislocations. Energy G({\alpha}) of GB computed for all range 0<={\alpha}<=Pi/3, shows a slightly asymmetric behavior, reaching ~5 eV/nm in the middle, where the 5's and 7's qualitatively reorganize in transition from nearly armchair to zigzag interfaces. Analysis shows that 2-dimensional nature permits the off-plane relaxation, unavailable in 3-dimensional materials, qualitatively reducing the energy of defects on one hand while forming stable 3D-landsapes on the other. Interestingly, while the GB display small off-plane elevation, the random distributions of 5's and 7's create roughness which scales inversely with defect concentration, h ~ n^(-1/2)Comment: 9 pages, 4 figure

    Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films

    Get PDF
    The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graphene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 900 Celsius degrees) involved during the process and of the theoretically expected monolayer self-limiting growth. On the contrary such self-limiting growth is not commonly observed in experiments, thus making the development of techniques allowing for a better control of graphene growth highly desirable. Here we report about the local ablation effect, arising in Raman analysis, due to the heat transfer induced by the laser incident beam onto the graphene sample.Comment: v1:9 pages, 8 figures, submitted to SpringerPlus; v2: 11 pages, PDFLaTeX, 9 figures, revised peer-reviewed version resubmitted to SpringerPlus; 1 figure added, figure 1 and 4 replaced,typos corrected, "Results and discussion" section significantly extended to better explain etching mechanism and features of Raman spectra, references adde

    Magnetic Properties of Single Transition-Metal Atom Absorbed Graphdiyne and Graphyne Sheet

    Full text link
    The electronic and magnetic properties of single 3d transition-metal(TM) atom (V, Cr, Mn, Fe, Co, and Ni) adsorbed graphdiyne (GDY) and graphyne (GY) are systematically studied using first-principles calculations within the density functional framework. We find that the adsorption of TM atom not only efficiently modulates the electronic structures of GDY/GY system, but also introduces excellent magnetic properties, such as half-metal and spin-select half-semiconductor. Such modulation originates from the charge transfer between TM adatom and the GDY/GY sheet as well as the electron redistribution of the TM intra-atomic s, p, and d orbitals. Our results indicate that the TM adsorbed GDY/GY are excellent candidates for spintronics.Comment: 8 pages, 7 figure

    Probing the Thermal Deoxygenation of Graphene Oxide using High Resolution In Situ X-Ray based Spectroscopies

    Full text link
    Despite the recent developments in Graphene Oxide due to its importance as a host precursor of Graphene, the detailed electronic structure and its evolution during the thermal reduction remain largely unknown, hindering its potential applications. We show that a combination of high resolution in situ X-ray photoemission and X-ray absorption spectroscopies offer a powerful approach to monitor the deoxygenation process and comprehensively evaluate the electronic structure of Graphene Oxide thin films at different stages of the thermal reduction process. It is established that the edge plane carboxyl groups are highly unstable, whereas carbonyl groups are more difficult to remove. The results consistently support the formation of phenol groups through reaction of basal plane epoxide groups with adjacent hydroxyl groups at moderate degrees of thermal activation (~400 {\deg}C). The phenol groups are predominant over carbonyl groups and survive even at a temperature of 1000 {\deg}C. For the first time a drastic increase in the density of states (DOS) near the Fermi level at 600 {\deg}C is observed, suggesting a progressive restoration of aromatic structure in the thermally reduced graphene oxideComment: Pagona Papakonstantinou as Corresponding author, E-mail: [email protected]

    Computational studies for reduced graphene oxide in hydrogen-rich environment

    Full text link
    We employ molecular dynamic simulations to study the reduction process of graphene-oxide (GO) in a chemically active environment enriched with hydrogen. We examine the concentration and pressure of hydrogen gas as a function of temperature in which abstraction of oxygen is possible with minimum damage to C-sp2^2 bonds hence preserving the integrity of the graphene sheet. Through these studies we find chemical pathways that demonstrate beneficiary mechanisms for the quality of graphene including formation of water as well as suppression of carbonyl pair holes in favor of hydroxyl and epoxy formation facilitated by hydrogen gas in the environment.Comment: 9 pages and 9 figures. Animations and movies are available at: http://qmsimulatorgojpc.wordpress.com

    The node of Ranvier in CNS pathology

    Get PDF
    • …
    corecore