392 research outputs found

    Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells

    Get PDF
    We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1 × 105 cells). However, they formed aggressive tumours upon co-implantation with a ‘foreign body’, i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPχ, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper–zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPχ (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPχ even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells. © 1999 Cancer Research Campaig

    Rapamycin Response in Tumorigenic and Non-Tumorigenic Hepatic Cell Lines

    Get PDF
    The mTOR inhibitor rapamycin has anti-tumor activity across a variety of human cancers, including hepatocellular carcinoma. However, resistance to its growth inhibitory effects is common. We hypothesized that hepatic cell lines with varying rapamycin responsiveness would show common characteristics accounting for resistance to the drug.We profiled a total of 13 cell lines for rapamycin-induced growth inhibition. The non-tumorigenic rat liver epithelial cell line WB-F344 was highly sensitive while the tumorigenic WB311 cell line, originally derived from the WB-F344 line, was highly resistant. The other 11 cell lines showed a wide range of sensitivities. Rapamycin induced inhibition of cyclin E-dependent kinase activity in some cell lines, but the ability to do so did not correlate with sensitivity. Inhibition of cyclin E-dependent kinase activity was related to incorporation of p27(Kip1) into cyclin E-containing complexes in some but not all cell lines. Similarly, sensitivity of global protein synthesis to rapamycin did not correlate with its anti-proliferative effect. However, rapamycin potently inhibited phosphorylation of two key substrates, ribosomal protein S6 and 4E-BP1, in all cases, indicating that the locus of rapamycin resistance was downstream from inhibition of mTOR Complex 1. Microarray analysis did not disclose a unifying mechanism for rapamycin resistance, although the glycolytic pathway was downregulated in all four cell lines studied.We conclude that the mechanisms of rapamycin resistance in hepatic cells involve alterations of signaling downstream from mTOR and that the mechanisms are highly heterogeneous, thus predicting that maintaining or promoting sensitivity will be highly challenging

    Cyclophilin C-associated protein (CyCAP) knock-out mice spontaneously develop colonic mucosal hyperplasia and exaggerated tumorigenesis after treatment with carcinogen azoxymethane1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of a "serrated neoplasia pathway" has highlighted the role of hyperplastic lesions of the colon as the significant precursor of colorectal adenocarcinoma. In mice, hyperplasia of the colonic mucosa is a regular phenomenon after a challenge with colonic carcinogens indicating that mucosal hyperproliferation and thickening, even without cytological dysplasia, represents an early pre-malignant change. Cyclophilin C-associated protein (CyCAP) has been described to down-modulate endotoxin signaling in colorectal murine mucosa and is a murine orthologue of the tumor-associated antigen 90 K (TAA90K)/mac-2-binding protein.</p> <p>Methods</p> <p>Female Balb/c wild-type (WT) and CyCAP knock-out (KO) mice (6–8 weeks old) were administered 2 or 6 weekly subcutaneous injections of azoxymethane. The animals were evaluated post-injection at six weeks for aberrant crypt foci (ACF) study and at five months for colon tumor measurement. The thickness of the colon crypts was measured in microns and the number of colonocytes per crypt was also determined in well-oriented crypts. Morphometric analyses of the colon mucosa were also performed in untreated 6–8 weeks old KO and WT animals. Formalin-fixed/paraffin-embedded colon sections were also studied by immunohistochemistry to determine the Ki-67 proliferation fraction of the colon mucosa, β-catenin cellular localization, cyclin D1, c-myc, and lysozyme in Paneth cells.</p> <p>Results</p> <p>Cyclophilin C-associated protein (CyCAP)<sup>-/- </sup>mice, spontaneously developed colonic mucosal hyperplasia early in life compared to wild-type mice (WT) (p < 0.0001, T-test) and crypts of colonic mucosa of the (CyCAP)<sup>-/- </sup>mice show higher proliferation rate (p = 0.039, Mann-Whitney Test) and larger number of cyclin D1-positive cells (p < 0.0001, Mann-Whitney Test). Proliferation fraction and cyclin D1 expression showed positive linear association (p = 0.019, Linear-by-Linear Association). The hyperplasia was even more pronounced in CyCAP<sup>-/- </sup>mice than in WT after challenge with azoxymethane (p = 0.005, T-test). The length of the crypts (r = 0.723, p = 0.018, Spearman Correlation) and the number of colonocytes per crypt (r = 0.863, p = 0.001, Spearman Correlation) in non-tumorous areas were positively associated with azoxymethane-induced number of tumors. CyCAP<sup>-/- </sup>developed larger numbers of tumors than WT animals (p = 0.003, T-Test) as well as overall larger tumor mass (p = 0.016, T-Test). Membranous β-catenin was focally overexpressed in KO mice including proliferative zone of the crypts.</p> <p>Conclusion</p> <p>CyCAP<sup>-/- </sup>represent the first described model of spontaneous colonic mucosal hyperplasia. We conclude that CyCAP-deficient mice spontaneously and after challenge with carcinogen develop significantly more colorectal mucosal hyperplasia, an early stage in murine colonic carcinogenesis.</p
    • …
    corecore