388 research outputs found

    Nanoscale structuring of tungsten tip yields most coherent electron point-source

    Full text link
    This report demonstrates the most spatially-coherent electron source ever reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5 V. The nanotips under study were crafted using a spatially-confined, field-assisted nitrogen etch which removes material from the periphery of the tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio source. The coherence properties are deduced from holographic measurements in a low-energy electron point source microscope with a carbon nanotube bundle as sample. Using the virtual source size and emission current the brightness normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2

    General relativistic corrections to the Sagnac effect

    Get PDF
    The difference in travel time of corotating and counter-rotating light waves in the field of a central massive and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field. Estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement is in the order of concrete possibilities.Comment: REVTex, accepted for publication on Phys. Rev.

    Theory of 'which path' dephasing in single electron interference due to trace in conductive environment

    Full text link
    A single-electron two-path interference (Young) experiment is considered theoretically. The decoherence of an electron wave packet due to the 'which path' trace left in the conducting (metallic) plate placed under the electron trajectories is calculated using the many-body quantum description of the electron gas reservoir.Comment: 11 pages, 5 figures, moderate changes, 1 new figure, updated reference

    Self-aligned nanoscale SQUID on a tip

    Get PDF
    A nanometer-sized superconducting quantum interference device (nanoSQUID) is fabricated on the apex of a sharp quartz tip and integrated into a scanning SQUID microscope. A simple self-aligned fabrication method results in nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An aluminum nanoSQUID with an effective area of 0.034 μ\mum2^2 displays flux sensitivity of 1.8106\cdot 10^{-6} Φ0/Hz1/2andoperatesinfieldsashighas0.6T.Withprojectedspinsensitivityof65\Phi_0/\mathrm{Hz}^{1/2} and operates in fields as high as 0.6 T. With projected spin sensitivity of 65 \mu_B/\mathrm{Hz}^{1/2}$ and high bandwidth, the SQUID on a tip is a highly promising probe for nanoscale magnetic imaging and spectroscopy.Comment: 14 manuscript pages, 5 figure

    Novel features in the flux-flow resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12}

    Full text link
    We have investigated the electrical resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12} in the mixed state. We found unusual double minima in the flux-flow resistivity as a function of magnetic field below the upper critical field for the first time, indicating double peaks in the pinning force density (FPF_{\rm P}). Estimated FPF_{\rm P} at the peak exhibits apparent dependence on applied field direction; composed of two-fold and four-fold symmetries mimicking the reported angular dependence of thermal conductivity (κ\kappa). The result is discussed in correlation with the double step superconducting (SC) transition in the specific heat and the multiple SC-phases inferred from the angular dependence of κ\kappa.Comment: 5 pages, 7 figures, to appear in J. Phys. Soc. Jpn. Vol. 74, No. 6 or

    Concept of an ionizing time-domain matter-wave interferometer

    Full text link
    We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as small as 80 nm, leading to wide diffraction angles for cold atoms and to compact setups even for very massive clusters. Accounting for the coherent and the incoherent parts of the particle-light interaction, we show that the combined effect of phase and amplitude modulation of the matter waves gives rise to a Talbot-Lau-like interference effect with a characteristic dependence on the pulse delay time.Comment: 25 pages, 5 figure

    Very Low Temperature Tunnelling Spectroscopy in the heavy fermion superconductor PrOs4_4Sb12_{12}

    Full text link
    We present scanning tunnelling spectroscopy measurements on the heavy fermion superconductor PrOs4_4Sb12_{12}. Our results show that the superconducting gap opens over a large part of the Fermi surface. The deviations from isotropic BCS s-wave behavior are discussed in terms of a finite distribution of values of the superconducting gap.Comment: 4 pages, 4 figure

    Magnetic Exciton Mediated Superconductivity in the Hidden-Order Phase of URu2Si2

    Full text link
    We propose the magnetic exciton mediated superconductivity occurring in the enigmatic hidden-order phase of URu2Si2. The characteristic of the massive collective excitation observed only in the hidden-order phase is well reproduced by the antiferro hexadecapole ordering model as the trace of the dispersive crystalline-electric-field excitation. The disappearance of the superconductivity in the high-pressure antiferro magnetic phase can naturally be understood by the sudden suppression of the magnetic-exciton intensity. The analysis of the momentum dependence of the magnetic-exciton mode leads to the exotic chiral d-wave singlet pairing in the Eg symmetry. The Ising-like magnetic-field response of the mode yields the strong anisotropy observed in the upper critical field even for the rather isotropic 3-dimensional Fermi surfaces of this compound.Comment: 5 pages, 4 figure

    Possible Pairing Symmetry of Three-dimensional Superconductor UPt3_3 -- Analysis Based on a Microscopic Calculation --

    Full text link
    Stimulated by the anomalous superconducting properties of UPt3_3, we investigate the pairing symmetry and the transition temperature in the two-dimensional(2D) and three-dimensional(3D) hexagonal Hubbard model. We solve the Eliashberg equation using the third order perturbation theory with respect to the on-site repulsion UU. As results of the 2D calculation, we obtain distinct two types of stable spin-triplet pairing states. One is the ff-wave(B1_1) pairing around n=1.2n = 1.2 and in a small UU region, which is caused by the ferromagnetic fluctuation. Then, the other is the pxp_x(or pyp_y)-wave(E1_1) pairing in large UU region far from the half-filling (n=1n = 1) which is caused by the vertex corrections only. However, we find that the former ff-wave pairing is destroyed by introduced 3D dispersion. This is because the 3D dispersion breaks the favorable structures for the ff-wave pairing such as the van Hove singularities and the small pocket structures. Thus, we conclude that the ferromagnetic fluctuation mediated spin-triplet state can not explain the superconductivity of UPt3_3. We also study the case of the pairing symmetry with a polar gap. This pzp_z-wave(A1_1) is stabilized by the large hopping integral along c-axis tzt_z. It is nearly degenerate with the suppressed pxp_x(or pyp_y)-wave(E1_1) in the best fitting parameter region to UPt3_3 (1.3tz1.51.3 \le t_z \le 1.5). These two p-wave pairing states exist in the region far from the half-filling, in which the vertex correction terms play crucial roles like the case in Sr2_2RuO4_4.Comment: 15 pages, 12 figure

    Split transition in ferromagnetic superconductors

    Full text link
    The split superconducting transition of up-spin and down-spin electrons on the background of ferromagnetism is studied within the framework of a recent model that describes the coexistence of ferromagnetism and superconductivity induced by magnetic fluctuations. It is shown that one generically expects the two transitions to be close to one another. This conclusion is discussed in relation to experimental results on URhGe. It is also shown that the magnetic Goldstone modes acquire an interesting structure in the superconducting phase, which can be used as an experimental tool to probe the origin of the superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig
    corecore