11,600 research outputs found
Spatiotemporal dynamics of quantum jumps with Rydberg atoms
We study the nonequilibrium dynamics of quantum jumps in a one-dimensional
chain of atoms. Each atom is driven on a strong transition to a short-lived
state and on a weak transition to a metastable state. We choose the metastable
state to be a Rydberg state so that when an atom jumps to the Rydberg state, it
inhibits or enhances jumps in the neighboring atoms. This leads to rich
spatiotemporal dynamics that are visible in the fluorescence of the strong
transition.Comment: 10 page
Performance of Major Flare Watches from the Max Millennium Program (2001-2010)
The physical processes that trigger solar flares are not well understood and
significant debate remains around processes governing particle acceleration,
energy partition, and particle and energy transport. Observations at high
resolution in energy, time, and space are required in multiple energy ranges
over the whole course of many flares in order to build an understanding of
these processes. Obtaining high-quality, co-temporal data from ground- and
space- based instruments is crucial to achieving this goal and was the primary
motivation for starting the Max Millennium program and Major Flare Watch (MFW)
alerts, aimed at coordinating observations of all flares >X1 GOES X-ray
classification (including those partially occulted by the limb). We present a
review of the performance of MFWs from 1 February 2001 to 31 May 2010,
inclusive, that finds: (1) 220 MFWs were issued in 3,407 days considered (6.5%
duty cycle), with these occurring in 32 uninterrupted periods that typically
last 2-8 days; (2) 56% of flares >X1 were caught, occurring in 19% of MFW days;
(3) MFW periods ended at suitable times, but substantial gain could have been
achieved in percentage of flares caught if periods had started 24 h earlier;
(4) MFWs successfully forecast X-class flares with a true skill statistic (TSS)
verification metric score of 0.500, that is comparable to a categorical
flare/no-flare interpretation of the NOAA Space Weather Prediction Centre
probabilistic forecasts (TSS = 0.488).Comment: 19 pages, 2 figures, accepted for publication in Solar Physic
Collective quantum jumps of Rydberg atoms
We study an open quantum system of atoms with long-range Rydberg interaction,
laser driving, and spontaneous emission. Over time, the system occasionally
jumps between a state of low Rydberg population and a state of high Rydberg
population. The jumps are inherently collective and in fact exist only for a
large number of atoms. We explain how entanglement and quantum measurement
enable the jumps, which are otherwise classically forbidden.Comment: 4 page
Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059
We have determined the mineralogical composition of dust in the Broad
Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy
obtained with the Spitzer Space Telescope. From spectral fitting of the solid
state features, we find evidence for Mg-rich amorphous silicates with olivine
stoichiometry, as well as the first detection of corundum (Al_2O_3) and
periclase (MgO) in quasars. This mixed composition provides the first direct
evidence for a clumpy density structure of the grain forming region. The
silicates in total encompass 56.5% of the identified dust mass, while corundum
takes up 38 wt.%. Depending on the choice of continuum, a range of mass
fractions is observed for periclase ranging from 2.7% in the most conservative
case to 9% in a less constrained continuum. In addition, we identify a feature
at 11.2 micron as the crystalline silicate forsterite, with only a minor
contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate
fraction requires high temperatures such as those found in the immediate quasar
environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure
Ultracold Rydberg Atoms in a Ioffe-Pritchard Trap
We discuss the properties of ultracold Rydberg atoms in a Ioffe-Pritchard
magnetic field configuration. The derived two-body Hamiltonian unveils how the
large size of Rydberg atoms affects their coupling to the inhomogeneous
magnetic field. The properties of the compound electronic and center of mass
quantum states are thoroughly analyzed. We find very tight confinement of the
center of mass motion in two dimensions to be achievable while barely changing
the electronic structure compared to the field free case. This paves the way
for generating a one-dimensional ultracold quantum Rydberg gas.Comment: 30 pages, 10 figures, added references, substantiation of
approximation
Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field
We present magnetotransport results for a 2D electron gas (2DEG) subject to
the quasi-random magnetic field produced by randomly positioned sub-micron Co
dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe
strong local and non-local anisotropic magnetoresistance for external magnetic
fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is
due to the changing topology of the quasi-random magnetic field in which
electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Investigating the driving mechanisms of coronal mass ejections
The objective of this investigation was to first examine the kinematics of
coronal mass ejections (CMEs) using EUV and coronagraph images, and then to
make a comparison with theoretical models in the hope to identify the driving
mechanisms of the CMEs. We have studied two CMEs which occurred on 2006 Dec. 17
(CME06) and 2007 Dec. 31 (CME07). The models studied in this work were
catastrophe, breakout, and toroidal instability models. We found that after the
eruption, the accelerations of both events exhibited a drop before increasing
again. Our comparisons with the theories suggested that CME06 can be best
described by a hybrid of the catastrophe and breakout models while CME07 is
most consistent with the breakout model.Comment: 9 pages 7 figure
Radio-frequency driven dipole-dipole interactions in spatially separated volumes
Radio-frequency (rf) fields in the MHz range are used to induce resonant
energy transfer between cold Rydberg atoms in spatially separated volumes.
After laser preparation of the Rydberg atoms, dipole-dipole coupling excites
the 49s atoms in one cylinder to the 49p state while the 41d atoms in the
second cylinder are transferred down to the 42p state. The energy exchanged
between the atoms in this process is 33 GHz. An external rf-field brings this
energy transfer into resonance. The strength of the interaction has been
investigated as a function of amplitude (0-1 V/cm) and frequency (1-30 MHz) of
the rf-field and as a function of a static field offset. Multi-photon
transitions up to fifth order as well as selection rules prohibiting the
process at certain fields have been observed. The width of the resonances has
been reduced compared to earlier results by switching off external magnetic
fields of the magneto-optical trap, making sub-MHz spectroscopy possible. All
features are well reproduced by theoretical calculations taking the strong
ac-Stark shift due to the rf-field into account
A rare early-type star revealed in the Wing of the Small Magellanic Cloud
Sk 183 is the visually-brightest star in the N90 nebula, a young star-forming
region in the Wing of the Small Magellanic Cloud (SMC). We present new optical
spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of
the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the
basis of its nitrogen spectrum, the star also displays broadened He I
absorption which suggests a later type. We propose that Sk 183 has a composite
spectrum and that it is similar to another star in the SMC, MPG 324. This
brings the number of rare O2- and O3-type stars known in the whole of the SMC
to a mere four. We estimate physical parameters for Sk 183 from analysis of its
spectrum. For a single-star model, we estimate an effective temperature of
46+/-2 kK, a low mass-loss rate of ~10^-7 Msun yr^-1, and a spectroscopic mass
of 46^+9_-8 Msun (for an adopted distance modulus of 18.7 mag to the young
population in the SMC Wing). An illustrative binary model requires a slightly
hotter temperature (~47.5 kK) for the primary component. In either scenario, Sk
183 is the earliest-type star known in N90 and will therefore be the dominant
source of hydrogen-ionising photons. This suggests Sk 183 is the primary
influence on the star formation along the inner edge of the nebula.Comment: Accepted by ApJ, 10 pages, 7 figures, v2 after proof
- …