17,270 research outputs found

    Cystatins as calpain inhibitors: Engineered chicken cystatin- and stefin B-kininogen domain 2 hybrids support a cystatin-like mode of interaction with the catalytic subunit of μ-calpain

    Get PDF
    Within the cystatin superfamily, only kininogen domain 2 (KD2) is able to inhibit μ- and m-calpain. In an attempt to elucidate the structural requirements of cystatins for calpain inhibition, we constructed recombinant hybrids of human stefin B (an intracellular family 1 cystatin) with KD2 and Delta L110 deletion mutants of chicken cystatin-KD2 hybrids. Substitution of the N-terminal contact region of stefin B by the corresponding KD2 sequence resulted in a calpain inhibitor of K-i = 188 nM. Deletion of L110, which forms a beta -bulge in family 1 and 2 cystatins but is lacking in KD2, improved inhibition of mu -calpain 4- to 8-fold. All engineered cystatins were temporary inhibitors of calpain due to slow substrate-like cleavage of a single peptide bond corresponding to Gly9-Ala10 in chicken cystatin. Biomolecular interaction analysis revealed that, unlike calpastatin, the cystatin-type inhibitors do not bind to the calmodulin-like domain of the small subunit of calpain, and their interaction with the mu -calpain heterodimer is completely prevented by a synthetic peptide comprising subdomain B of calpastatin domain 1. Based on these results we propose that (i) cystatin-type calpain inhibitors interact with the active site of the catalytic domain of calpain in a similar cystatin-like mode as with papain and (ii) the potential for calpain inhibition is due to specific subsites within the papain-binding regions of the general cystatin fold

    Scaling and singularities in the entrainment of globally-coupled oscillators

    Full text link
    The onset of collective behavior in a population of globally coupled oscillators with randomly distributed frequencies is studied for phase dynamical models with arbitrary coupling. The population is described by a Fokker-Planck equation for the distribution of phases which includes the diffusive effect of noise in the oscillator frequencies. The bifurcation from the phase-incoherent state is analyzed using amplitude equations for the unstable modes with particular attention to the dependence of the nonlinearly saturated mode α|\alpha_\infty| on the linear growth rate γ\gamma. In general we find αγ(γ+l2D)|\alpha_\infty|\sim \sqrt{\gamma(\gamma+l^2D)} where DD is the diffusion coefficient and ll is the mode number of the unstable mode. The unusual (γ+l2D)(\gamma+l^2D) factor arises from a singularity in the cubic term of the amplitude equation.Comment: 11 pages (Revtex); paper submitted to Phys. Rev. Let

    X-ray emission from the field of the hyperluminous IRAS galaxy IRASF15307+3252

    Get PDF
    We report on a 20-ks observation of the z = 0.93 hyperluminous galaxy IRAS F15307+3252 with the ROSAT HRI. No X-ray source is detected at the position of F15307+3252 at an upper limit of ∼4 × 10⁴³ erg s⁻¹. This is less than 2 × 10⁻⁴ of the bolometric luminosity of the object, and indicates either that the nucleus emits an unusually small fraction of its total power in X-rays, or that little of the nuclear X-ray flux is scattered into our line of sight by electrons. The lack of an X-ray detection around F15307+3252 also rules out it being at the centre of a cluster, such as is observed for IRAS P09104+4109. A weak, possibly extended, X-ray source is detected 13 arcsec south of the galaxy, spatially coincident with a clump of faint objects visible in a Keck K_s-band image of the field. This may be the core of a cluster near the line of sight to F15307+3252

    Overview of Deployed EDS Technologies And Third Party Involvement with Advancedments

    Get PDF

    The relationship between the optical Halpha filaments and the X-ray emission in the core of the Perseus cluster

    Full text link
    NGC 1275 in the centre of the Perseus cluster of galaxies, Abell 426, is surrounded by a spectacular filamentary Halpha nebula. Deep Chandra X-ray imaging has revealed that the brighter outer filaments are also detected in soft X-rays. This can be due to conduction and mixing of the cold gas in the filaments with the hot, dense intracluster medium. We show the correspondence of the filaments in both wavebands and draw attention to the relationship of two prominent curved NW filaments to an outer, buoyant radio bubble seen as a hole in the X-ray image. There is a strong resemblance in the shape of the hole and the disposition of the filaments to the behaviour of a large air bubble rising in water. If this is a correct analogy, then the flow is laminar and the intracluster gas around this radio source is not turbulent. We obtain a limit on the viscosity of this gas.Comment: Accepted for publication in MNRA

    Counselor Training in Two Evidence-Based Practices: Motivational Interviewing and Cognitive Behavior Therapy

    Get PDF
    This study served as a preliminary investigation of training counseling students in two evidence-based practices: motivational interviewing and cognitive behavior therapy. Students’ skill demonstrations were assessed for competency at three data points during students’ graduate training program. Results showed modest success in students learning to competently practice both evidence-based approaches

    Detection of shocked atomic gas in the Kleinmann-Low nebula

    Get PDF
    The 63 micrometer (3)p(1)-(3)P(2) fine structure line emission of neutral atomic oxygen at the center of the Orion nebula with a resolution of 30" is presented. There are three main emission peaks. One is associated with the region of strongest thermal radio continuum radiation close to the Trapezium cluster, and probably arises at the interface between the HII region and the dense Orion molecular cloud. The other two line emission peaks, associated with the Kleinmann Low nebula, are similar in both distribution and velocity to those of the 2 micrometer S(1) line of molecular hydrogen and of the high velocity wings of rotational CO emission. The OI emission from the KL nebula can be produced in the shocked gas associated with the mass outflows in this region and is an important coolant of the shocked gas
    corecore