13,186 research outputs found

    Zero area singularities in general relativity and inverse mean curvature flow

    Full text link
    First we restate the definition of a Zero Area Singularity, recently introduced by H. Bray. We then consider several definitions of mass for these singularities. We use the Inverse Mean Curvature Flow to prove some new results about the mass of a singularity, the ADM mass of the manifold, and the capacity of the singularity.Comment: 13 page

    Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results

    Full text link
    We consider the pair correlation functions of both the order parameter field and its square for phase ordering in the O(n)O(n) model with nonconserved order parameter, in spatial dimension 2d32\le d\le 3 and spin dimension 1nd1\le n\le d. We calculate, in the scaling limit, the exact short-distance singularities of these correlation functions and compare these predictions to numerical simulations. Our results suggest that the scaling hypothesis does not hold for the d=2d=2 O(2)O(2) model. Figures (23) are available on request - email [email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2

    A counter-example to a recent version of the Penrose conjecture

    Full text link
    By considering suitable axially symmetric slices on the Kruskal spacetime, we construct counterexamples to a recent version of the Penrose inequality in terms of so-called generalized apparent horizons.Comment: 12 pages. Appendix added with technical details. To appear in Classical and Quantum Gravit

    Scaling Analysis of Domain-Wall Free-Energy in the Edwards-Anderson Ising Spin Glass in a Magnetic Field

    Get PDF
    The stability of the spin-glass phase against a magnetic field is studied in the three and four dimensional Edwards-Anderson Ising spin glasses. Effective couplings and effective fields associated with length scale L are measured by a numerical domain-wall renormalization group method. The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of H which diverges as H goes to zero but remains finite for any non-zero H, implying that the spin-glass phase is absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-range spin glasses.Comment: 4 pages, 5 figures; The text is slightly changed, the figures 3, 4 and 5 are changed, and a few references are adde

    Growth Laws for Phase Ordering

    Full text link
    We determine the characteristic length scale, L(t)L(t), in phase ordering kinetics for both scalar and vector fields, with either short- or long-range interactions, and with or without conservation laws. We obtain L(t)L(t) consistently by comparing the global rate of energy change to the energy dissipation from the local evolution of the order parameter. We derive growth laws for O(n) models, and our results can be applied to other systems with similar defect structures.Comment: 12 pages, LaTeX, second tr

    Real space analysis of inherent structures

    Full text link
    We study a generalization of the one-dimensional disordered Potts model, which exhibits glassy properties at low temperature. The real space properties of inherent structures visited dynamically are analyzed through a decomposition into domains over which the energy is minimized. The size of these domains is distributed exponentially, defining a characteristic length scale which grows in equilibrium when lowering temperature, as well as in the aging regime at a given temperature. In the low temperature limit, this length can be interpreted as the distance between `excited' domains within the inherent structures.Comment: 7 pages, 8 figures, final versio

    Reply to "Comment on Evidence for the droplet picture of spin glasses"

    Full text link
    Using Monte Carlo simulations (MCS) and the Migdal-Kadanoff approximation (MKA), Marinari et al. study in their comment on our paper the link overlap between two replicas of a three-dimensional Ising spin glass in the presence of a coupling between the replicas. They claim that the results of the MCS indicate replica symmetry breaking (RSB), while those of the MKA are trivial, and that moderate size lattices display the true low temperature behavior. Here we show that these claims are incorrect, and that the results of MCS and MKA both can be explained within the droplet picture.Comment: 1 page, 1 figur

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϵ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    Coarsening Dynamics of a Nonconserved Field Advected by a Uniform Shear Flow

    Full text link
    We consider the ordering kinetics of a nonconserved scalar field advected by a uniform shear flow. Using the Ohta-Jasnow-Kawasaki approximation, modified to allow for shear-induced anisotropy, we calculate the asymptotic time dependence of the characteristic length scales, L_parallel and L_perp, that describe the growth of order parallel and perpendicular to the mean domain orientation. In space dimension d=3 we find, up to constants, L_parallel = gamma t^{3/2}, L_perp = t^{1/2}, where gamma is the shear rate, while for d = 2 we find L_parallel = gamma^{1/2} t (ln t)^{1/4}, L_perp = gamma^{-1/2}(ln t)^{-1/4} . Our predictions for d=2 can be tested by experiments on twisted nematic liquid crystals.Comment: RevTex, 4 page
    corecore