405 research outputs found
Interaction between concentric Tubes in DWCNTs
A detailed investigation of the Raman response of the inner tube radial
breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed
that the number of observed RBMs is two to three times larger than the number
of possible tubes in the studied frequency range. This unexpected increase in
Raman lines is attributed to a splitting of the inner tube response. It is
shown to originate from the possibility that one type of inner tube may form in
different types of outer tubes and the fact that the inner tube RBM frequency
depends on the diameter of the enclosing tube. Finally, a comparison of the
inner tube RBMs and the RBMs of tubes in bundles gave clear evidence that the
interaction in a bundle is stronger than the interaction between inner and
outer tubes.Comment: 6 pages, 7 figures, submitted to Eur. Phys. J.
EVALUATION OF EXHAUST GAS FROM BIO-DIESEL FUEL ENGINE
Joint Research on Environmental Science and Technology for the Eart
Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C@SWCNT
High filling of single wall carbon nanotubes (SWCNT) with C and
C fullerenes in solvent is reported at temperatures as low as 69
C. A 2 hour long refluxing in n-hexane of the mixture of the fullerene
and SWCNT results in a high yield of C,C@SWCNT, fullerene peapod,
material. The peapod filling is characterized by TEM, Raman and electron energy
loss spectroscopy and X-ray scattering. We applied the method to synthesize the
temperature sensitive (N@C:C)@SWCNT as proved by electron spin
resonance spectroscopy. The solvent prepared peapod samples can be transformed
to double walled nanotubes enabling a high yield and industrially scalable
production of DWCNT
SONOLYTICAL PRODUCTION OF BIO-DIESEL FUEL FROM NON-EDIBLE VEGETABLE OIL
Joint Research on Environmental Science and Technology for the Eart
Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory
In this paper, we investigate the low frequency Raman spectra of multi-wall
carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency
Raman modes are unambiguously identified on purified samples thanks to the
small internal diameter of the MWNT. We propose a model to describe these
modes. They originate from the radial breathing vibrations of the individual
walls coupled through the Van der Waals interaction between adjacent concentric
walls. The intensity of the modes is described in the framework of bond
polarization theory. Using this model and the structural characteristics of the
nanotubes obtained from transmission electron microscopy allows to simulate the
experimental low frequency Raman spectra with an excellent agreement. It
suggests that Raman spectroscopy can be as useful regarding the
characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.
Water formation at low temperatures by surface O2 hydrogenation II: the reaction network
Water is abundantly present in the Universe. It is the main component of
interstellar ice mantles and a key ingredient for life. Water in space is
mainly formed through surface reactions. Three formation routes have been
proposed in the past: hydrogenation of surface O, O2, and O3. In a previous
paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an
unexpected non-standard zeroth-order H2O2 production behaviour in O2
hydrogenation experiments, which suggests that the proposed reaction network is
not complete, and that the reaction channels are probably more interconnected
than previously thought. In this paper we aim to derive the full reaction
scheme for O2 surface hydrogenation and to constrain the rates of the
individual reactions. This is achieved through simultaneous H-atom and O2
deposition under ultra-high vacuum conditions for astronomically relevant
temperatures. Different H/O2 ratios are used to trace different stages in the
hydrogenation network. The chemical changes in the forming ice are followed by
means of reflection absorption infrared spectroscopy (RAIRS). New reaction
paths are revealed as compared to previous experiments. Several reaction steps
prove to be much more efficient (H + O2) or less efficient (H + OH and H2 + OH)
than originally thought. These are the main conclusions of this work and the
extended network concluded here will have profound implications for models that
describe the formation of water in space.Comment: 1 page, 1 figur
The fate of plasma-generated oxygen atoms in aqueous solutions: non-equilibrium atmospheric pressure plasmas as an efficient source of atomic O(aq)
Non-equilibrium radio-frequency driven atmospheric-pressure plasma in He/0.6%O2 gas mixture has been used to study the reaction mechanism of plasma-generated oxygen atoms in aqueous solutions. The effluent from the plasma source operated with standard and 18O-labeled O2 gas was used to treat water in the presence of phenol as a chemical probe. Comparing the mass spectrometry and gas chromatography-mass spectrometry data of the solutions treated with plasma under normal and labeled oxygen provides clear evidence that O(aq) originating from the gas phase enters the liquid and reacts directly with phenol, without any intermediate reactions. Additionally, the atmospheric-pressure plasma source demonstrates great potential to be an effective source of O(aq) atoms without the requirement for any precursors in the liquid phase
Electronic and Magnetic Properties of Nanographite Ribbons
Electronic and magnetic properties of ribbon-shaped nanographite systems with
zigzag and armchair edges in a magnetic field are investigated by using a tight
binding model. One of the most remarkable features of these systems is the
appearance of edge states, strongly localized near zigzag edges. The edge state
in magnetic field, generating a rational fraction of the magnetic flux (\phi=
p/q) in each hexagonal plaquette of the graphite plane, behaves like a
zero-field edge state with q internal degrees of freedom. The orbital
diamagnetic susceptibility strongly depends on the edge shapes. The reason is
found in the analysis of the ring currents, which are very sensitive to the
lattice topology near the edge. Moreover, the orbital diamagnetic
susceptibility is scaled as a function of the temperature, Fermi energy and
ribbon width. Because the edge states lead to a sharp peak in the density of
states at the Fermi level, the graphite ribbons with zigzag edges show
Curie-like temperature dependence of the Pauli paramagnetic susceptibility.
Hence, it is shown that the crossover from high-temperature diamagnetic to
low-temperature paramagnetic behavior of the magnetic susceptibility of
nanographite ribbons with zigzag edges.Comment: 13 pages including 19 figures, submitted to Physical Rev
Electronic states and quantum transport in double-wall carbon nanotubes
Electronic states and transport properties of double-wall carbon nanotubes
without impurities are studied in a systematic manner. It is revealed that
scattering in the bulk is negligible and the number of channels determines the
average conductance. In the case of general incommensurate tubes, separation of
degenerated energy levels due to intertube transfer is suppressed in the energy
region higher than the Fermi energy but not in the energy region lower than
that. Accordingly, in the former case, there are few effects of intertube
transfer on the conductance, while in the latter case, separation of
degenerated energy levels leads to large reduction of the conductance. It is
also found that in some cases antiresonance with edge states in inner tubes
causes an anomalous conductance quantization, , near the Fermi
energy.Comment: 24 pages, 13 figures, to be published in Physical Review
- …