36 research outputs found

    Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): a randomized controlled trial

    No full text
    BACKGROUND: Currently no effective antiviral therapy has been found to treat COVID-19. The aim of this trial was to assess if the addition of sofosbuvir and daclatasvir improved clinical outcomes in patients with moderate or severe COVID-19. METHODS: This was an open-label, multicentre, randomized controlled clinical trial in adults with moderate or severe COVID-19 admitted to four university hospitals in Iran. Patients were randomized into a treatment arm receiving sofosbuvir and daclatasvir plus standard care, or a control arm receiving standard care alone. The primary endpoint was clinical recovery within 14 days of treatment. The study is registered with IRCT.ir under registration number IRCT20200128046294N2. RESULTS: Between 26 March and 26 April 2020, 66 patients were recruited and allocated to either the treatment arm (n = 33) or the control arm (n = 33). Clinical recovery within 14 days was achieved by 29/33 (88%) in the treatment arm and 22/33 (67%) in the control arm (P = 0.076). The treatment arm had a significantly shorter median duration of hospitalization [6 days (IQR 4-8)] than the control group [8 days (IQR 5-13)]; P = 0.029. Cumulative incidence of hospital discharge was significantly higher in the treatment arm versus the control (Gray's P = 0.041). Three patients died in the treatment arm and five in the control arm. No serious adverse events were reported. CONCLUSIONS: The addition of sofosbuvir and daclatasvir to standard care significantly reduced the duration of hospital stay compared with standard care alone. Although fewer deaths were observed in the treatment arm, this was not statistically significant. Conducting larger scale trials seems prudent

    On-chip detection of a single nucleotide polymorphism without polymerase amplification

    No full text
    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD(−) wild type and three PKD positive cats. The standard curves for PKD positive (PKD(+)) and negative (PKD(−)) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable
    corecore