32,630 research outputs found
Diagnosing numerical Cherenkov instabilities in relativistic plasma simulations based on general meshes
Numerical Cherenkov radiation (NCR) or instability is a detrimental effect
frequently found in electromagnetic particle-in-cell (EM-PIC) simulations
involving relativistic plasma beams. NCR is caused by spurious coupling between
electromagnetic-field modes and multiple beam resonances. This coupling may
result from the slow down of poorly-resolved waves due to numerical (grid)
dispersion and from aliasing mechanisms. NCR has been studied in the past for
finite-difference-based EM-PIC algorithms on regular (structured) meshes with
rectangular elements. In this work, we extend the analysis of NCR to
finite-element-based EM-PIC algorithms implemented on unstructured meshes. The
influence of different mesh element shapes and mesh layouts on NCR is studied.
Analytic predictions are compared against results from finite-element-based
EM-PIC simulations of relativistic plasma beams on various mesh types.Comment: 31 pages, 20 figure
Systematic Analysis of Gene Expression Differences between Left and Right Atria in Different Mouse Strains and in Human Atrial Tissue
Background: Normal development of the atria requires left-right differentiation during embryonic development. Reduced expression of Pitx2c (paired-like homeodomain transcription factor 2, isoform c), a key regulator of left-right asymmetry, has recently been linked to atrial fibrillation. We therefore systematically studied the molecular composition of left and right atrial tissue in adult murine and human atria.
Methods: We compared left and right atrial gene expression in healthy, adult mice of different strains and ages by
employing whole genome array analyses on freshly frozen atrial tissue. Selected genes with enriched expression in either atrium were validated by RT-qPCR and Western blot in further animals and in shock-frozen left and right atrial appendages of patients undergoing open heart surgery.
Results: We identified 77 genes with preferential expression in one atrium that were common in all strains and age groups analysed. Independent of strain and age, Pitx2c was the gene with the highest enrichment in left atrium, while Bmp10, a member of the TGFb family, showed highest enrichment in right atrium. These differences were validated by RT-qPCR in murine and human tissue. Western blot showed a 2-fold left-right concentration gradient in PITX2 protein in adult human atria. Several of the genes and gene groups enriched in left atria have a known biological role for maintenance of healthy physiology, specifically the prevention of atrial pathologies involved in atrial fibrillation, including membrane electrophysiology, metabolic cellular function, and regulation of inflammatory processes. Comparison of the array datasets with published array analyses in heterozygous Pitx2c+/2 atria suggested that approximately half of the genes with left-sided enrichment are regulated by Pitx2c.
Conclusions: Our study reveals systematic differences between left and right atrial gene expression and supports the hypothesis that Pitx2c has a functional role in maintaining ‘‘leftness’’ in the atrium in adult murine and human hearts
Precise B, B_s and B_c meson spectroscopy from full lattice QCD
We give the first accurate results for and meson masses from
lattice QCD including the effect of , and sea quarks, and we improve
an earlier value for the meson mass. By using the Highly Improved
Staggered Quark action for , and quarks and NRQCD for the
quarks, we are able to achieve an accuracy in the masses of around 10 MeV. Our
results are: = 5.291(18) GeV, = 5.363(11) GeV and =
6.280(10) GeV. Note that all QCD parameters here are tuned from other
calculations, so these are parameter free tests of QCD against experiment. We
also give scalar, , and axial vector, , meson masses. We find
these to be slightly below threshold for decay to and respectively.Comment: 22 pages, 19 figure
A Prediction of the B*_c mass in full lattice QCD
By using the Highly Improved Staggered Quark formalism to handle charm,
strange and light valence quarks in full lattice QCD, and NRQCD to handle
bottom valence quarks we are able to determine accurately ratios of the B meson
vector-pseudoscalar mass splittings, in particular,
(m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing
the `light' quark mass dependence of this splitting to be very small. Hence we
predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the
lattice calculation and the third from existing experiment. This is the most
accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure
Quantum Algebraic Approach to Refined Topological Vertex
We establish the equivalence between the refined topological vertex of
Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of
type W_{1+infty} introduced by Miki. Our construction involves trivalent
intertwining operators Phi and Phi^* associated with triples of the bosonic
Fock modules. Resembling the topological vertex, a triple of vectors in Z^2 is
attached to each intertwining operator, which satisfy the Calabi-Yau and
smoothness conditions. It is shown that certain matrix elements of Phi and
Phi^* give the refined topological vertex C_{lambda mu nu}(t,q) of
Iqbal-Kozcaz-Vafa. With another choice of basis, we recover the refined
topological vertex C_{lambda mu}^nu(q,t) of Awata-Kanno. The gluing factors
appears correctly when we consider any compositions of Phi and Phi^*. The
spectral parameters attached to Fock spaces play the role of the K"ahler
parameters.Comment: 27 page
Report on the fifth international workshop on the CCN family of genes
The Fifth International Workshop on the CCN Family of Genes was held in Toronto October 18–22, 2008. This bi-annual workshop provides a unique opportunity for the presentation and discussion of cutting edge research in the CCN field. The CCN family members have emerged as extracellular matrix associated proteins which play a crucial role in cardiovascular and skeletal development, fibrosis and cancer. Significant progress has been made in the development of model systems to tease apart the CCN signalling pathways in these systems. Results presented at the conference suggest that targeting these pathways now shows real promise as a therapeutic strategy
A consistent picture for large penguins in D -> pi+ pi-, K+ K-
A long-standing puzzle in charm physics is the large difference between the
D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF
collaborations reported a surprisingly large difference between the direct CP
asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are
naturally related in the Standard Model via s- and d-quark "penguin
contractions". Their sum gives rise to Delta A_CP, while their difference
contributes to the two branching ratios with opposite sign. Assuming nominal
SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay
rates yields large penguin contractions that naturally explain Delta A_CP.
Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure
A 5d/3d duality from relativistic integrable system
We propose and prove a new exact duality between the F-terms of
supersymmetric gauge theories in five and three dimensions with adjoint matter
fields. The theories are compactified on a circle and are subject to the Omega
deformation. In the limit proposed by Nekrasov and Shatashvili, the
supersymmetric vacua become isolated and are identified with the eigenstates of
a quantum integrable system. The effective twisted superpotentials are the
Yang-Yang functional of the relativistic elliptic Calogero-Moser model. We show
that they match on-shell by deriving the Bethe ansatz equation from the saddle
point of the five-dimensional partition function. We also show that the
Chern-Simons terms match and extend our proposal to the elliptic quiver
generalizations.Comment: 30 pages, 4 figures. v2: typo corrected, references adde
- …