6,981 research outputs found

    Numerical Assessment of Fibre Inclusion in a Load Transfer Platform for Pile-Supported Embankments over Soft Soil

    Full text link
    © 2016 ASCE. This study presents the results of a numerical investigation in the performance of natural fibre reinforced load transfer platform (NFRLTP) for pile supported embankment construction over soft soil. A numerical analysis based on finite element method (FEM) was carried out on an NFRLTP pile-supported embankment in a two-dimensional plane strain condition. The effects of natural fibre inclusion in the load transfer platform on the stress transfer mechanism, generation and dissipation of excess pore water pressure have been analyzed and discussed in detail. The findings indicate that natural fibre reinforced soil as a load transfer platform facilitated the load transfer process from the embankment to piles, while decreases the intensity of load transferred to soft soil, the excess pore water pressure and the overall settlement

    Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer

    Full text link
    We describe an ultra-sensitive atomic magnetometer using optically-pumped potassium atoms operating in spin-exchange relaxation free (SERF) regime. We demonstrate magnetic field sensitivity of 160 aT/Hz1/2^{1/2} in a gradiometer arrangement with a measurement volume of 0.45 cm3^3 and energy resolution per unit time of 4444 \hbar. As an example of a new application enabled by such a magnetometer we describe measurements of weak remnant rock magnetization as a function of temperature with a sensitivity on the order of 1010^{-10} emu/cm3^3/Hz1/2^{1/2} and temperatures up to 420^\circC

    The theta-join as a join with theta

    Get PDF
    We present an algebra for the classical database operators. Contrary to most approaches we use (inner) join and projection as the basic operators. Theta joins result by representing theta as a database table itself and defining theta-join as a join with that table. The same technique works for selection. With this, (point-free) proofs of the standard optimisation laws become very simple and uniform. The approach also applies to proving join/projection laws for preference queries. Extending the earlier approach of [16], we replace disjointness assumptions on the table types by suitable consistency conditions. Selected results have been machine-verified using the CALCCHECK tool

    Behaviour of Expansive Soils Stabilized with Hydrated Lime and Bagasse Fibres

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V. Soil stabilization is the most common ground improvement technique adopted to improve problematic soil properties. This investigation exhibits a series of laboratory tests conducted to evaluate the influences of bagasse fibres and hydrated lime addition on the engineering properties and shrink-swell behaviour of stabilised expansive soils. Bagasse fibre is industrial waste by-product left after the crushing of sugar cane for juice extraction that was used in this study as reinforcing component for expansive soil stabilization. The expansive soils used in this investigation were collected from Queensland, Australia. In order to investigate the influences of bagasse fibres on the engineering behaviour of expansive soil, varying proportions of randomly distributed bagasse fibres of 0.5%, 1.0%, and 2.0% were added to expansive soil and hydrated lime-expansive soils mixed with different bagasse fibre proportions were also investigated. Although, an array of experimental tests have been undertaken on untreated and treated expansive soil samples, merely the outcomes of linear shrinkage, unconfined compressive strength (UCS) tests after various curing periods of 3, 7 and 28 days are presented in this paper. Other test results have been identified as follow up research. The findings of this experimental investigation indicate that bagasse fibre reinforcement blended with hydrated lime increased the compressive strength of expansive soil with increase in curing time and additives contents, whereas the linear shrinkage of stabilised expansive soils decreased with increasing hydrated lime and bagasse fibre proportions and curing periods. Based on the reasonable laboratory test results, it can be noted that the expansive soils can be successfully stabilized by combination of hydrated lime and bagasse fibres

    An experimental study on engineering behaviour of lime and bagasse fibre reinforced expansive soils

    Full text link
    © 2017 19th ICSMGE Secretariat. All rights reserved. This investigation exhibits a series of laboratory tests conducted to evaluate the influences of bagasse fibre and hydrated lime addition on the engineering properties and swelling behaviour of stabilised expansive soils. Bagasse fibre is industrial waste byproduct left after crushing of sugar-cane for juice extraction, used in this study as a reinforcing component for expansive soil stabilisation. The expansive soils used in this investigation were collected from Queensland, Australia. Varying proportions of randomly distributed bagasse fibre of 0.5%, 1.0%, and 2.0% were added to expansive soil and lime-treated expansive soil to investigate the influences of bagasse fibre on the engineering characteristics of stabilised soil. Results of California bearing capacity (CBR), swell potential and one-dimensional consolidation tests after various curing time are presented and discussed in detail. The findings of this experimental investigation indicate that expansive soil reinforcement, blended with bagasse fibre and lime leads to a significant increase in the compressive strength and the bearing capacity of expansive soil. Meanwhile, the swell potential and compressibility of stabilised expansive soils decreased with increasing lime and bagasse fibre contents

    Remediation of Expansive Soils Using Agricultural Waste Bagasse Ash

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V. Bagasse is a fibrous material remaining after crushing sugarcane to extract its juice; and bagasse ash is produced after burning bagasse. Improper disposal of this material can create environmental problems around sugar manufacturing plants. Bagasse ash, comprising a high percentage of silica (SiO2), is considered as a sensible pozzolanic material with non-reactive behaviour and has potential to be used in road subgrade stabilisation. One of the main challenges for transportation organisations in Australia is to treat subgrades including expansive soils. Expansive soils exhibit significant movements when the moisture content changes, and hence it causes substantial damage to road pavements constructed over these type of soils. Road engineers need to employ materials having acceptable strength, relatively low price and being eco-friendly. In order to demonstrate the potential ability of bagasse ash in curtailing the adverse effects of expansive soils on roads, an array of experimental tests using bagasse ash have been conducted. In this study to activate and improve the effectiveness of bagasse ash, hydrated lime was used and mixed with black soil samples, collected from Queensland Australia. Samples were prepared using different contents of bagasse ash and hydrated lime (0%, 6%, 10%, 18% and 25% by the dry mass of soil), at a ratio of 3:1, respectively. The results of free swell ratio (FSR) test, unconfined compression strength (UCS) and California bearing ratio (CBR) tests are presented for untreated and treated samples after various curing time periods of 3, 7 and 28 days. The outcomes of these tests clearly demonstrate that stabilisation of expansive soils using bagasse ash and hydrated lime not only improves the strength, but also facilitates to cope with environmental concerns through reduction of sugar industry waste material
    corecore