39 research outputs found

    Quantum Entanglement of Moving Bodies

    Full text link
    We study the properties of quantum information and quantum entanglement in moving frames. We show that the entanglement between the spins and the momenta of two particles can be interchanged under a Lorentz transformation, so that a pair of particles that is entangled in spin but not momentum in one reference frame, may, in another frame, be entangled in momentum at the expense of spin-entanglement. Similarly, entanglement between momenta may be transferred to spin under a Lorentz transformation. While spin and momentum entanglement each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and hence the discussion of the data was changed. Also, references were added. Another example was added to the pape

    Spatial geometry of the rotating disk and its non-rotating counterpart

    Full text link
    A general relativistic description of a disk rotating at constant angular velocity is given. It is argued that conceptually this direct approach poses fewer problems than the special relativistic one. For observers on the disk, the geometry of their proper space is hyperbolic. This has interesting consequences concerning their interpretation of the geometry of a non-rotating disk having the same radius. The influence of clock synchronization on spatial measurements is discussed.Comment: 10 pages, 3 figures, this is the version accepted by American Journal of Physics; I had to remove the special relativity part, which one of the referees did not like; it is still available in v

    On the electrodynamics of moving bodies at low velocities

    Get PDF
    We discuss the seminal article in which Le Bellac and Levy-Leblond have identified two Galilean limits of electromagnetism, and its modern implications. We use their results to point out some confusion in the literature and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We retrieve Le Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a 5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields. We discuss various applications and experiments, such as in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, superconductivity, continuous media, etc. Much of the current technology where waves are not taken into account, is actually based on Galilean electromagnetism

    The Relative Space: Space Measurements on a Rotating Platform

    Full text link
    We introduce here the concept of relative space, an extended 3-space which is recognized as the only space having an operational meaning in the study of the space geometry of a rotating disk. Accordingly, we illustrate how space measurements are performed in the relative space, and we show that an old-aged puzzling problem, that is the Ehrenfest's paradox, is explained in this purely relativistic context. Furthermore, we illustrate the kinematical origin of the tangential dilation which is responsible for the solution of the Ehrenfest's paradox.Comment: 14 pages, 2 EPS figures, LaTeX, to appear in the European Journal of Physic

    Sur le concept de température en thermodynamique relativiste et en thermodynamique statistique

    No full text

    о релятивистской механике сплошных сред

    No full text

    Sur le concept de température en termodynamique statistique

    No full text

    Comment on Dr. Kibble’s article

    No full text

    Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques

    No full text

    Relativistic transformation laws for thermodynamic variables

    No full text
    corecore