18 research outputs found

    Modulation of granule cell migration by a glia-derived protein.

    No full text

    ACSA‐2 and GLAST classify subpopulations of multipotent and glial‐restricted cerebellar precursors

    No full text
    The formation of the cerebellum is highly coordinated to obtain its characteristic morphology and all cerebellar cell types. During mouse postnatal development, cerebellar progenitors with astroglial‐like characteristics generate mainly astrocytes and oligodendrocytes. However, a subset of astroglial‐like progenitors found in the prospective white matter (PWM) produces astroglia and interneurons. Characterizing these cerebellar astroglia‐like progenitors and distinguishing their developmental fates is still elusive. Here, we reveal that astrocyte cell surface antigen‐2 (ACSA‐2), lately identified as ATPase, Na+/K+ transporting, beta 2 polypeptide, is expressed by glial precursors throughout postnatal cerebellar development. In contrast to common astrocyte markers, ACSA‐2 appears on PWM cells but is absent on Bergmann glia (BG) precursors. In the adult cerebellum, ACSA‐2 is broadly expressed extending to velate astrocytes in the granular layer, white matter astrocytes, and to a lesser extent to BG. Cell transplantation and transcriptomic analysis revealed that marker staining discriminates two postnatal progenitor pools. One subset is defined by the co‐expression of ACSA‐2 and GLAST and the expression of markers typical of parenchymal astrocytes. These are PWM precursors that are exclusively gliogenic. They produce predominantly white matter and granular layer astrocytes. Another subset is constituted by GLAST positive/ACSA‐2 negative precursors that express neurogenic and BG‐like progenitor genes. This population displays multipotency and gives rise to interneurons besides all glial types, including BG. In conclusion, this work reports about ACSA‐2, a marker that in combination with GLAST enables for the discrimination and isolation of multipotent and glia‐committed progenitors, which generate different types of cerebellar astrocytes

    Functional role of a glycolipid in directional movements of neurons

    No full text
    Migration of neurons from their site of origin to their final destination is a critical and universal step in the formation of the complex structure of the nervous system. The migratory process is thought to be governed in part by genetically and epigenetically defined sequences of signals which are interpreted by migrating cells. The molecular mechanisms that underlie neuronal migration have been the subject of intense investigation. As in other developmental processes, many molecules must participate in neuronal migration. Some molecules, such as cell adhesion molecules and motor proteins, may contribute to discrete steps in the migration act; others, like extracellular signaling molecules, may regulate the activation and/or termination of the migration program. In this article we review findings from our group that demonstrate the functional role(s) of a specific glycolipid in neuronal migration and neurite outgrowth in the developing and adult nervous system.<br>A migração de neurônios de seus sítios de origem a seus destinos finais é uma etapa universal e crítica na formação da complexa estrutura do sistema nervoso. Admite-se que o processo migratório seja governado, em parte, por sequências de sinais definidas genetica e epigeneticamente que são interpretadas pelas células migrantes. Os mecanismos moleculares subjacentes à migração neuronal têm sido objeto de intensa investigação. Como em outros processos do desenvolvimento, muitas moléculas devem participar na migração neuronal. Algumas delas, como as moléculas de adesão e proteínas motoras, podem contribuir para etapas discretas no ato de migração; outras, como moléculas extra-celulares de sinalização, podem regular a ativação e/ou o término do programa de migração. Neste artigo nós revisamos achados de nosso grupo que demonstram o(s) papel (papéis) funcional(ais) de um glicolipídeo específico na migração neuronal e no crescimento de neuritos no sistema nervoso em desenvolvimento bem como no adulto
    corecore