100 research outputs found

    Magnetoelectric Properties of (Ca1−x_{1-x}Srx_{x})2_2CoSi2_2O7_7 Crystals

    Full text link
    We have investigated the magnetoelectric properties of (Ca1−x_{1-x}Srx_{x})2_2CoSi2_2O7_7 (0≤x≤10\leq x\leq 1) crystals with a quasi-two-dimensional structure. In Ca2_2CoSi2_2O7_7 (x=0x=0), a canted antiferromagnetic transition occurs at 5.6 K. The transition temperature TNT_{\rm N} is increasing with increasing Sr concentration, and the rises of the magnetization and dielectric constant become larger. Since the dielectric constant shows large change at TNT_{\rm N} and the magnetocapacitance effect is observed below TNT_{\rm N}, a coupling between the magnetism and dielectricity is strong in (Ca1−x_{1-x}Srx_{x})2_2CoSi2_2O7_7. The positive magnetocapacitance is reduced by Sr substitution, and is not observed in x≥0.5x\geq 0.5. Namely, the compound of x≥0.5x\geq 0.5 does not show the magnetic-field-induced electric polarization. On the other hand, the negative magnetocapacitance is enhanced by Sr substitution.Comment: 4 pages, 2figures, proceeding of International Conference on Magnetism 200

    Reduction of critical field for magnetic and orbital-ordering phase transition in impurity-substituted Nd0.45_{0.45}Sr0.55_{0.55}MnO3_3 crystal

    Full text link
    We have investigated the Mn-site substitution effect in Nd0.45_{0.45}Sr0.55_{0.55}MnO3_3 single crystal, which has an AA-type layered antiferromagnetic (AA-AFM) phase with the 3dx2−y2d_{x^2-y^2}-type orbital-order. Substitution of Fe or Ga for Mn-site suppresses both the AA-AFM order and competing ferromagnetic (FM) correlation whereas Cr substitution suppresses only the AA-AFM order but reactivates the underlying FM correlation via double-exchange mechanism along the AFM coupled cc-direction. In Nd0.45_{0.45}Sr0.55_{0.55}Mn0.95_{0.95}Cr0.05_{0.05}O3_3, the AA-AFM state with the orbital-order is changed into the orbital-disordered three-dimensional FM metallic state by applying magnetic field of μ0H=12\mu_0 H = 12 T, which is much smaller than that of the parent compound Nd0.45_{0.45}Sr0.55_{0.55}MnO3_3.Comment: 5 pages, 4 figures, to appear in APL Material

    Cr-doping effect on the orbital fluctuation of heavily doped Nd1-xSrxMnO3 (x ~ 0.625)

    Full text link
    We have investigated the Cr-doping effect of Nd0.375Sr0.625MnO3 near the phase boundary between the x2-y2 and 3z2-r2 orbital ordered states, where a ferromagnetic correlation and concomitant large magnetoresistance are observed owing to orbital fluctuation. Cr-doping steeply suppresses the ferromagnetic correlation and magnetoresistance in Nd0.375Sr0.625Mn1-yCryO3 with 0 < y < 0.05, while they reappear in 0.05 < y < 0.10. Such a reentrant behavior implies that a phase boundary is located at y = 0.05, or a phase crossover occurs across y = 0.05.Comment: 3 pages, 3 figures, to be published in Journal of Applied Physic

    Multiferroic properties of an \aa kermanite Sr2_2CoSi2_2O7_7 single crystal in high magnetic fields

    Full text link
    The magnetic and dielectric properties of \aa kermanite Sr2_2CoSi2_2O7_7 single crystals in high magnetic fields were investigated. We have observed finite induced electric polarization along the c axis in high fields, wherein all Co spins were forcibly aligned to the magnetic field direction. Existence of the induced polarization in the spin-polarized state accompanied with the finite slope in the magnetization curve suggests the possible role of the orbital angular momenta in the excited states as its microscopic origin. The emergence of the field-induced polarization without particular magnetic order can be regarded as the magnetoelectric effects of the second order from the symmetry point of view. A low magnetic field-driven electric polarization flip induced by a rotating field, even at room temperature, has been successfully demonstrated.Comment: 12 pages, 4 figure

    Energy shift of the three-particle system in a finite volume

    Full text link
    Using the three-particle quantization condition recently obtained in the particle-dimer framework, the finite-volume energy shift of the two lowest three-particle scattering states is derived up to and including order L−6L^{-6}. Furthermore, assuming that a stable dimer exists in the infinite volume, the shift for the lowest particle-dimer scattering state is obtained up to and including order L−3L^{-3}. The result for the lowest three-particle state agrees with the results from the literature, and the result for the lowest particle-dimer state reproduces the one obtained by using the Luescher equation.Comment: Final version published in Phys. Rev. D. Corrected typos: factor of 2 in Eq. (115) [previously Eq. (114)] and factor 6 in Eq. (120) [previously Eq. (119)

    Magnetic-field-induced switching between ferroelectric phases in orthorhombic-distortion-controlled RRMnO3_{3}

    Full text link
    We have investigated the dielectric and magnetic properties of Eu0.595_{0.595}Y0.405_{0.405}MnO3_{3} withoutwithout the presence of the 4ff magnetic moments of the rare earth ions, and have found two ferroelectric phases with polarization along the aa and cc axes in a zero magnetic field. A magnetic field induced switching from one to the other ferroelectric phase took plase in which the direction of ferroelectric polarization changed from the a axis to the c axis by the application of magnetic fields parallel to the a axis. In contrast to the case of TbMnO3_{3}, in which the 4ff moments of Tb3+^{3+} ions play an important role in such a ferroelectric phase switching, the magnetic-field-induced switching between ferroelectric phases in Eu0.595_{0.595}Y0.405_{0.405}MnO3_{3} does not originate from the magnetic transition of the rare-earth 4ff moments, but from that of the Mn 3dd spins.Comment: 8 pages, 3 figures, RevTeX4, Proceedings of MMM 2005, to appear in J. Appl. Phy

    Gigantic magnetoelectric effect caused by magnetic-field-induced canted antiferromagnetic-paramagnetic transition in quasi-two-dimensional Ca2_2CoSi2_2O7_7 crystal

    Full text link
    We have investigated the magnetic and dielectric properties of Ca2_2CoSi2_2O7_7 crystal. The dielectricity and magnetism of Ca2_2CoSi2_2O7_7 are strongly coupled below a canted antiferromagnetic transition temperature (TNT_{\rm N}): Magnetic fields induce electric polarization below TNT_{\rm N}. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TNT_{\rm N}, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TNT_{\rm N}. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.Comment: 3 pages, 3 figures. accepted to Applied Physics Letter

    Internal magnetic field effect on magnetoelectricity in orthorhombic RMnO3RMnO_3 crystals

    Full text link
    We have investigated the role of the 4ff moment on the magnetoelectric (ME) effect of orthorhombic RRMnO3_{3} (RR=rare earth ions). In order to clarify the role of the 4ff moment, we prepared three samples: (Eu,Y)MnO3_{3} without the 4ff moment, TbMnO3_{3} with the anisotropic 4ff moment, and (Gd,Y)MnO3_{3} with the isotropic 4ff moment. The ferroelectric behaviors of these samples are different from each other in a zero magnetic field. (Eu,Y)MnO3_{3} and (Gd,Y)MnO3_{3} show the ferroelectric polarization along the a axis in the ground state, while TbMnO3_{3} shows it along the c axis. Such difference may arise from the influence of the anisotropic Tb3+^{3+} 4ff moment. The direction of the ferroelectric polarization of RRMnO3_{3} is determined by the internal magnetic field arising from the 4ff moment.Comment: 2 pages, 1 figure, the proceeding of International Conference of Magnetism, to be published in the Journal of Magnetism and Magnetic Material
    • …
    corecore