279 research outputs found

    Unusual Higgs or Supersymmetry from Natural Electroweak Symmetry Breaking

    Full text link
    This review provides an elementary discussion of electroweak symmetry breaking in the minimal and the next-to-minimal supersymmetric models with the focus on the fine-tuning problem -- the tension between natural electroweak symmetry breaking and the direct search limit on the Higgs boson mass. Two generic solutions of the fine-tuning problem are discussed in detail: models with unusual Higgs decays; and models with unusual pattern of soft supersymmetry breaking parameters.Comment: 23 pages, 6 figures; invited review by MPL

    Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in CeCoIn5

    Full text link
    We report specific heat measurements of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical field H_{c2}, with magnetic field in the [110], [100], and [001] directions, and at temperatures down to 50 mK. The superconducting phase transition changes from second to first order for field above 10 T for H || [110] and H || [100]. In the same range of magnetic field we observe a second specific heat anomaly within the superconducting state. We interpret this anomaly as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. We obtain similar results for H || [001], with FFLO state occupying a smaller part of the phase diagram.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Letter

    Nanoscale structuring of tungsten tip yields most coherent electron point-source

    Full text link
    This report demonstrates the most spatially-coherent electron source ever reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5 V. The nanotips under study were crafted using a spatially-confined, field-assisted nitrogen etch which removes material from the periphery of the tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio source. The coherence properties are deduced from holographic measurements in a low-energy electron point source microscope with a carbon nanotube bundle as sample. Using the virtual source size and emission current the brightness normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2

    Anisotropy of Thermal Conductivity and Possible Signature of the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn_5

    Full text link
    We have measured the thermal conductivity of the heavy-fermion superconductor CeCoIn_5 in the vicinity of the upper critical field, with the magnetic field perpendicular to the c axis. Thermal conductivity displays a discontinuous jump at the superconducting phase boundary below critical temperature T_0 ~ 1 K, indicating a change from a second to first order transition and confirming the recent results of specific heat measurements on CeCoIn_5. In addition, the thermal conductivity data as a function of field display a kink at a field H_k below the superconducting critical field, which closely coincides with the recently discovered anomaly in specific heat, tentatively identified with the appearance of the spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state. Our results indicate that the thermal conductivity is enhanced within the FFLO state, and call for further theoretical investigations of the order parameter's real space structure (and, in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.Comment: 19 pages, 6 figures, submitted to Prhys. Rev.

    Mixed-State Thermodynamics of Superconductors with Moderately Large Paramagnetic Effects

    Full text link
    Effects of Pauli paramagnetism on thermodynamic quantities in a vortex state, such as the specific heat CC and magnetization MM, are studied using the quasiclassical Eilenberger formalism. We demonstrate that with an increase of paramagnetic depairing effect, the sigh of the curvature of the field dependence of CC changes from negative to positive, and that the Maki parameter κ2\kappa_2 becomes an increasing function of temperature. Our results provide a natural explanation for the unusual field dependence of CC seen in CeCoIn5_5 in terms of the paramagnetic effect.Comment: Published in J. Phys. Soc. Jpn. 74, 2181 (2005
    corecore