2,355 research outputs found

    On the efficient numerical solution of lattice systems with low-order couplings

    Full text link
    We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling

    Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies

    Full text link
    Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on samples containing a quasi-two-dimensional electron gas quantum-confined in a parabolic quantum well. For rectangular shaped grating couplers of different periods we observe a strong dependence of the transmission line shape and peak height on the period of the grating, i.e. on the wave vector transfer from the diffracted beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quantization effects. Our theory reproduces excellently the experimental line shapes. The deformation of the transmission line shapes we explain by the occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres

    More Flexible Damping Systems for Blades and Vanes

    Get PDF
    The blades and the vanes of aero engines are subject to very high thermo-mechanical loads. In some cases, an additional damping system is necessary to reach the lifetime goals. Commonly, damping systems based on energy dissipation due to friction are used, e.g. under platform dampers for blades and spring dampers for the vanes. These damping systems have some limitations: under platform dampers work well mostly for just one mode family, their effectiveness is limited relative to rotational speed (because of the associated contact forces) and is dependent on the excitation order. The spring dampers work well for more than one mode family but their effectiveness is limited concerning the available contact force (just one value). Additionally, the use of the spring dampers requires a significant, sometimes suboptimal design change of the vane cluster. In this paper, some alternative damping systems are introduced and analyzed. All these new systems offer additional possibilities for damping and give more design flexibility. Two of them: insert damping and rocking damping are also based on frictional energy dissipation. The third one, impulse mistuning, adopts a special kind of absorption and is based on the so called targeted energy transfer. The analytical results for the insert damping systems were presented previously in Borufka et al. (2009), while in this paper the experimental validation by shaker tests is shown. The rocking damping was not presented so far – to the knowledge of the authors. Impulse mistuning was first presented in: Hartung and Retze (2011) and Hartung et al. (2016). In this work, an overview of such damping systems and some additional information on the experimental validation of some impulse mistuning systems are presented

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa
    • 

    corecore