45 research outputs found

    Comment on ``Superconducting PrBa_2Cu_3O_x''

    Full text link
    Recently, Zou et al. (Phys. Rev. Lett. 80, 1074, 1998) reported the observation of bulk superconductivity (SC) for a PrBa_2Cu_3O_x (Pr123) single crystal grown by the traveling-solvent floating zone (TSFZ) method. The aim of this Comment is to show the inconsistency of the value of effective magnetic moment \mu_{eff} reported by Zou et al. (2.92\mu_B) with their magnetic susceptibility data. The estimation made directly from their data points gives a considerably smaller value of \mu_{eff}=2.09\mu_B. At the same time the values of mu_{eff}=2.9\mu_B and 3.1\mu_B were obtained for our Pr123 single crystals grown by flux method for H||ab-plane and H||c-axis, respectively. This suggests that Pr occupies only about a half of the RE sites in TSFZ crystal. The other half of the RE sites is occupied most probably by the nonmagnetic Ba. Noteworthy, SC with T_c=43 K was observed earlier for Pr_{0.5}Ca_{0.5}Ba_2Cu_3O_{7-y} thin films. Ba^{2+} has a larger ionic radius than Pr^{3+} and so the substitution of Ba for Pr could give a natural explanation not only for the SC in TSFZ Pr123 but also for the elongation of the distance between the CuO_2 planes observed by Zou et al.Comment: Slightly extended version of Comment accepted to Phys. Rev. Lett. (v.81, N24, 1998), tentatevely to be publ. 14Dec98. 1 page, REVTex; 1 EPS fi

    Anomalous Magnetic Ordering in PrBa₂Cu₄O₈ and CmBa₂Cu₃O₇

    Get PDF
    A review of temperature-dependent magnetization data for nonsuperconducting PrBa2Cu4O8 and CmBa2Cu3O7 suggests that the failure of each to superconduct is related to the presence of Pr and Cm on their respective Ba sites. This defect is manifested, in each case, by short c-axis lattice parameters and anomalous high-temperature magnetic ordering which has been incorrectly attributed to ordering of the entire magnetic sublattice. Instead, it is shown that the anomalous high-temperature ordering as seen in the magnetization data is consistent with the ordering of magnetic ions substituted on the Ba site

    On the possibility of superconductivity in PrBa2Cu3O7

    Full text link
    Recent reports about observations of superconductivity in PrBa2Cu3O7 raise a number of questions: (i) of various theories striving to explain the Tc suppression in PrxY{1-x}Ba2Cu3O7, are there any compatible with possible superconductivity in stoichiometric PrBa2Cu3O7? (ii) if this superconductivity is not an experimental artifact, are the superconducting carriers (holes) of the same character as in the other high-Tc cuprates, or do they represent another electronic subsystem? (iii) is the underlying mechanism the same as in other high-Tc superconductors? I present an answer to the first two questions, while leaving the last one open.Comment: 4 pages 4 eps fig

    The Decomposition of YBa₂Cu₃O₇₋δ Doped into Ba₂YRuO₆

    Get PDF
    One of the persistent criticisms of claims for observation of superconductivity in Ba2YRu1−uCuuO6 (O6) is that the diamagnetism is actually due to the decomposition of the material into YBa2Cu3O7−delta and other phases. We report a series of experiments in which YBa2Cu3O7−delta is doped into Ba2YRuO6 and carried through a series of sintering steps which were followed by magnetization, neutron diffraction, and scanning electron microscopy/microprobe measurements. It was found that the dopant YBa2Cu3O7−delta decomposed and failed to reform with cooling. It is concluded that the O6 phase is the stable high-temperature phase. The Cu released from the Y123 decomposition doped the host Ba2YRuO6, in partial substitution for Ru. This doping resulted in a small diamagnetic response with an onset temperature of ~84 K

    Origin of the Superconductivity in the Y-Sr-Ru-O and Y-Sr-Cu-O Systems

    Full text link
    We report on the structural, magnetic, and Raman-scattering studies of double perovskite structure Sr2Y(Ru1-xCux)O6-d systems made by systematic synthesis processes with various numbers of doping concentrations and sintering temperatures. We observed different behaviors resulting from the different thermal treatments. In particular, superconductivity in Cu-doped Sr2YRuO6 has been observed only for partially melted ceramic materials. We show that superconductivity is associated with the 1:2:3 phase (YSr2Cu3Ot), similar to that of Y-Sr-Cu-O samples sintered at high temperature

    Electronic and Magnetic Properties of Electron-doped Superconductor, Sm_{1.85}Ce_{0.15}CuO_{4-delta}

    Full text link
    Temperature-dependent magnetization (M(T)) and specific heat (C_p(T)) measurements were carried out on single crystal Sm_{1.85}Ce_{0.15}CuO_{4-delta} (T_c = 16.5 K). The magnetic anisotropy in the static susceptibility, chi {equiv} M/H, is apparent not only in its magnitude but also in its temperature dependence, with chi_{perp} for H{perp}c larger than chi_{parallel} for H{parallel}c. For both field orientations, chi does not follow the Curie-Weiss behavior due to the small energy gap of the J = 7/2 multiplet above the J = 5/2 ground-state multiplet. However, with increasing temperature, chi_{parallel}(T) exhibits a broad minimum near 100 K and then a slow increase while chi_{perp}(T) shows a monotonic decrease. A sharp peak in C_p(T) at 4.7 K manifests an antiferromagnetic ordering. The electronic contribution, gamma, to C_p(T) is estimated to be gamma = 103.2 (7) mJ/moleSmK^2. The entropy associated with the magnetic ordering is much smaller than Rln2, where R is the gas constant, which is usually expected for the doublet ground state of Sm^{+3}. The unusual magnetic and electronic properties evident in M(T) and C_p(T) are probably due to a strong anisotropic interaction between conduction electrons and localized electrons at Sm^{+3} sites.Comment: 5 pages, 5 encapsulated postscript figures, late

    Hole depletion and localization due to disorder in insulating PrBa2Cu3O7-d: a Compton scattering study

    Full text link
    The (mostly) insulating behaviour of PrBa2Cu3O7-d is still unexplained and even more interesting since the occasional appearance of superconductivity in this material. Since YBa2Cu3O7-d is nominally iso-structural and always superconducting, we have measured the electron momentum density in these materials. We find that they differ in a striking way, the wavefunction coherence length in PrBa2Cu3O7-d being strongly suppressed. We conclude that Pr on Ba-site substitution disorder is responsible for the metal-insulator transition. Preliminary efforts at growth with a method to prevent disorder yield 90K superconducting PrBa2Cu3O7-d crystallites.Comment: 4 pages, 3 figures, revised version submitted to PR

    Electrical anisotropy in high-Tc granular superconductors in a magnetic field

    Get PDF
    We propose an analytical model devoted to explain the anisotropy of the electrical resistance observed below the critical temperature in granular high-Tc superconductors submitted to a magnetic field H. Reported experimental results obtained on a YBCO sample show that the superconducting transition occurs in two stages, with a steep drop of the resistance at Tc and a subsequent, smoother decrease. In this second stage, the resistance versus temperature curve is strongly dependent not only on the field intensity, but also on the angle between H and the macroscopic current density j. We start from the assumption that the resistance below Tc is mainly due to the weak links between grains. In the model, weak links are thought of as flat surface elements separating adjacent grains. We calculate the probability for a weak link to undergo the transition to the resistive state as a function of the angle it makes with the external magnetic field H and the macroscopic current density j. In doing this, an important role is given to the strong nonuniformity of the local magnetic field within the specimen, due to the effect of the screening supercurrents flowing on the surface of the grains. Finally, we calculate the electrical resistance of the sample in the two cases H⊥j and H∥j. The predictions of this simple model turn out to be in reasonable agreement with reported experimental results obtained on a YBCO granular specimen

    Coherent Potential Approximation for `d - wave' Superconductivity in Disordered Systems

    Get PDF
    A Coherent Potential Approximation is developed for s-wave and d-wave superconductivity in disordered systems. We show that the CPA formalism reproduces the standard pair-breaking formula, the self-consistent Born Approximation and the self-consistent T-matrix approximation in the appropriate limits. We implement the theory and compute T_c for s-wave and d-wave pairing using an attractive nearest neighbor Hubbard model featuring both binary alloy disorder and a uniform distribution of scattering site potentials. We determine the density of states and examine its consequences for low temperature heat capacity. We find that our results are in qualitative agreement with measurements on Zn doped YBCO superconductors.Comment: 35 pages, 23 figures, submitted to Phys Rev.
    corecore