86,634 research outputs found
Superconductivity in ternary molybdenum sulfides
Three research papers are presented: (1) Superconductivity in Th-Zr Alloys; (2) Superconductivity in Pd-Si-H(D) alloys; and (3) Low Temperature Specific Heat of Amorphous Pd-Si Alloys
A minimal approach to the scattering of physical massless bosons
Tree and loop level scattering amplitudes which involve physical massless
bosons are derived directly from physical constraints such as locality,
symmetry and unitarity, bypassing path integral constructions. Amplitudes can
be projected onto a minimal basis of kinematic factors through linear algebra,
by employing four dimensional spinor helicity methods or at its most general
using projection techniques. The linear algebra analysis is closely related to
amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon
amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton
amplitudes. Projection techniques are known to reduce the computation of loop
amplitudes with spinning particles to scalar integrals. Unitarity, locality and
integration-by-parts identities can then be used to fix complete tree and loop
amplitudes efficiently. The loop amplitudes follow algorithmically from the
trees. A range of proof-of-concept examples is presented. These include the
planar four point two-loop amplitude in pure Yang-Mills theory as well as a
range of one loop amplitudes with internal and external scalars, gluons and
gravitons. Several interesting features of the results are highlighted, such as
the vanishing of certain basis coefficients for gluon and graviton amplitudes.
Effective field theories are naturally and efficiently included into the
framework. The presented methods appear most powerful in non-supersymmetric
theories in cases with relatively few legs, but with potentially many loops.
For instance, iterated unitarity cuts of four point amplitudes for
non-supersymmetric gauge and gravity theories can be computed by matrix
multiplication, generalising the so-called rung-rule of maximally
supersymmetric theories. The philosophy of the approach to kinematics also
leads to a technique to control color quantum numbers of scattering amplitudes
with matter.Comment: 65 pages, exposition improved, typos correcte
Superfluid response in electron-doped cuprate superconductors
We propose a weakly coupled two-band model with pairing
symmetry to account for the anomalous temperature dependence of superfluid
density in electron-doped cuprate superconductors. This model gives a
unified explanation to the presence of a upward curvature in near
and a weak temperature dependence of in low temperatures. Our
work resolves a discrepancy in the interpretation of different experimental
measurements and suggests that the pairing in electron-doped cuprates has
predominately symmetry in the whole doping range.Comment: 4 pages, 3 figures, title changed and references adde
Consistent forcing scheme in the cascaded lattice Boltzmann method
In this paper, we give a more pellucid derivation for the cascaded lattice
Boltzmann method (CLBM) based on a general multiple-relaxation-time (MRT) frame
through defining a shift matrix. When the shift matrix is a unit matrix, the
CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is
developed for the CLBM. The applicability of the non-slip rule, the
second-order convergence rate in space and the property of isotropy for the
consistent forcing scheme is demonstrated through the simulation of several
canonical problems. Several other existing force schemes previously used in the
CLBM are also examined. The study clarifies the relation between MRT LBM and
CLBM under a general framework
Bound States and Critical Behavior of the Yukawa Potential
We investigate the bound states of the Yukawa potential , using different algorithms: solving the Schr\"odinger
equation numerically and our Monte Carlo Hamiltonian approach. There is a
critical , above which no bound state exists. We study the
relation between and for various angular momentum quantum
number , and find in atomic units, , with , ,
, and .Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in
China
Linear and Non Linear Effects on the Newtonian Gravitational Constant as deduced from the Torsion Balance
The Newtonian gravitational constant has still 150 parts per million of
uncertainty. This paper examines the linear and nonlinear equations governing
the rotational dynamics of the torsion gravitational balance. A nonlinear
effect modifying the oscillation period of the torsion gravitational balance is
carefully explored.Comment: 11 pages, 2 figure
Monte Carlo Hamiltonian from Stochastic Basis
In order to extend the recently proposed Monte Carlo Hamiltonian to many-body
systems, we suggest to concept of a stochastic basis. We apply it to the chain
of coupled anharmonic oscillators. We compute the spectrum of excited
states in a finite energy window and thermodynamical observables free energy,
average energy, entropy and specific heat in a finite temperature window.
Comparing the results of the Monte Carlo Hamiltonian with standard Lagrangian
lattice calculations, we find good agreement. However, the Monte Carlo
Hamiltonian results show less fluctuations under variation of temperature.Comment: revised version, new figures. Text (LaTeX), 4 Figs. (eps), style fil
- …
