1,011 research outputs found

    Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3

    Full text link
    We study low temperature properties of an atomic spinless interacting Fermi gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer. The system is described by a quantum spin 1/2 model on the triangular lattice with couplings depending on bonds directions. Using exact diagonalizations we show that the system exhibits non-standard properties of a {\it quantum spin-liquid crystal}, combining a planar antiferromagnetic order with an exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.

    Atomic quantum gases in Kagom\'e lattices

    Full text link
    We demonstrate the possibility of creating and controlling an ideal and \textit{trimerized} optical Kagom\'e lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagom\'e lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such quantum spin liquid employing molecular Bose condensates.Comment: 4 pages, 1 figure. Missing affiliations adde

    High value timber composite panels from hardwood plantation thinnings.

    Get PDF
    Identifying processing strategies and products that suit young plantation hardwoods has proved challenging with low product recoveries and/or unmarketable products being the outcome of many trials. The production of rotary veneer has been demonstrated as an effective method for converting plantation hardwood trees. Across nine processing studies that included six different plantation species (Dunn’s white gum, spotted gum, Gympie messmate, spotted gum hybrid, red mahogany and western white gum), simple spindleless lathe technology was used to process 914 veneer billets totally 37.4 m3

    Finite-temperature ordering in a two-dimensional highly frustrated spin model

    Full text link
    We investigate the classical counterpart of an effective Hamiltonian for a strongly trimerized kagome lattice. Although the Hamiltonian only has a discrete symmetry, the classical groundstate manifold has a continuous global rotational symmetry. Two cases should be distinguished for the sign of the exchange constant. In one case, the groundstate has a 120^\circ spin structure. To determine the transition temperature, we perform Monte-Carlo simulations and measure specific heat, the order parameter as well as the associated Binder cumulant. In the other case, the classical groundstates are macroscopically degenerate. A thermal order-by-disorder mechanism is predicted to select another 120^\circ spin-structure. A finite but very small transition temperature is detected by Monte-Carlo simulations using the exchange method.Comment: 11 pages including 9 figures, uses IOP style files; to appear in J. Phys.: Condensed Matter (proceedings of HFM2006

    Atomic Bose-Fermi mixtures in an optical lattice

    Full text link
    A mixture of ultracold bosons and fermions placed in an optical lattice constitutes a novel kind of quantum gas, and leads to phenomena, which so far have been discussed neither in atomic physics, nor in condensed matter physics. We discuss the phase diagram at low temperatures, and in the limit of strong atom-atom interactions, and predict the existence of quantum phases that involve pairing of fermions with one or more bosons, or, respectively, bosonic holes. The resulting composite fermions may form, depending on the system parameters, a normal Fermi liquid, a density wave, a superfluid liquid, or an insulator with fermionic domains. We discuss the feasibility for observing such phases in current experiments.Comment: 4 pages, 1 eps figure, misprints correcte

    Quantum gases in trimerized kagom\'e lattices

    Get PDF
    We study low temperature properties of atomic gases in trimerized optical kagom\'{e} lattices. The laser arrangements that can be used to create these lattices are briefly described. We also present explicit results for the coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a single component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per trimer is verified in a mean field approach. The main emphasis of the paper is on an atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with two fermions per site. This system is shown to be described by a quantum spin 1/2 model on the triangular lattice with couplings that depend on the bond directions. We investigate this model by means of exact diagonalization. Our key finding is that the system exhibits non-standard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state with an exceptionally large number of low energy excitations. The possibilities of experimental verification of our theoretical results are critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous minor corrections with respect to former lanl submissio
    corecore