2,714 research outputs found
Neutrino-induced deuteron disintegration experiment
Cross sections for the disintegration of the deuteron via neutral-current
(NCD) and charged-current (CCD) interactions with reactor antineutrinos are
measured to be 6.08 +/- 0.77 x 10^(-45) cm-sq and 9.83 +/- 2.04 x 10^(-45)
cm-sq per neutrino, respectively, in excellent agreement with current
calculations. Since the experimental NCD value depends upon the CCD value, if
we use the theoretical value for the CCD reaction, we obtain the improved value
of 5.98 +/- 0.54 x 10^(-45) for the NCD cross section. The neutral-current
reaction allows a unique measurement of the isovector-axial vector coupling
constant in the hadronic weak interaction (beta). In the standard model, this
constant is predicted to be exactly 1, independent of the Weinberg angle. We
measure a value of beta^2 = 1.01 +/- 0.16. Using the above improved value for
the NCD cross section, beta^2 becomes 0.99 +/- 0.10.Comment: 22pages, 9 figure
Large-Area Liquid Scintillation Detector Slab
A low-cost detector 18' x 2' x 5" has been developed for an underground cosmic ray neutrino experiment. The liquid employed is a high-clarity mineral oil-based mixture, and light is guided to the ends of the detector by total internal reflection at the surface of the Lucite container. Signals from 2 five-inch photomultipliers at each end give energy and event location for single penetrating particles, with relatively good discrimination against natural radioactivity by virtue of the substantial thickness. Data are presented on the response function of the tank, energy resolution, rates and thresholds. A number of modifications that have been tried are also described
Smoke gets in your eyes:what is sociological about cigarettes?
Contemporary public health approaches increasingly draw attention to the unequal social distribution of cigarette smoking. In contrast, critical accounts emphasize the importance of smokers’ situated agency, the relevance of embodiment and how public health measures against smoking potentially play upon and exacerbate social divisions and inequality. Nevertheless, if the social context of cigarettes is worthy of such attention, and sociology lays a distinct claim to understanding the social, we need to articulate a distinct, positive and systematic claim for smoking as an object of sociological enquiry. This article attempts to address this by situating smoking across three main dimensions of sociological thinking: history and social change; individual agency and experience; and social structures and power. It locates the emergence and development of cigarettes in everyday life within the project of modernity of the nineteenth and twentieth centuries. It goes on to assess the habituated, temporal and experiential aspects of individual smoking practices in everyday lifeworlds. Finally, it argues that smoking, while distributed in important ways by social class, also works relationally to render and inscribe it
Majorana Neutrinos and Gravitational Oscillation
We analyze the possibility of encountering resonant transitions of high
energy Majorana neutrinos produced in Active Galactic Nuclei (AGN). We consider
gravitational, electromagnetic and matter effects and show that the latter are
ignorable. Resonant oscillations due to the gravitational interactions are
shown to occur at energies in the PeV range for magnetic moments in the
range. Coherent precession will dominate for larger magnetic
moments. The alllowed regions for gravitational resonant transitions are
obtained.Comment: 11 pages, 8 figures, Latex; requires revtex and epsf.tex submitted to
Physical Review
Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions
Conditions under which compression occurs and collective expansion develops
in energetic reactions of heavy nuclei, are analyzed, together with their
effects on emitted light baryons and pions. Within transport simulations, it is
shown that shock fronts perpendicular to beam axis form in head-on reactions.
The fronts separate hot compressed matter from normal. As impact parameter
increases, the angle of inclination of the fronts relative to beam axis
decreases, and in-between the fronts a weak tangential discontinuity develops.
Hot matter exposed to the vacuum in directions perpendicular to shock motion
(and parallel to fronts), starts to expand sideways, early within reactions.
Expansion in the direction of shock motion follows after the shocks propagate
through nuclei, but due to the delay does not acquire same strength. Expansion
affects angular distributions, mean-energy components, shapes of spectra and
mean energies of different particles emitted into any one direction, and
further particle yields. Both the expansion and a collective motion associated
with the weak discontinuity, affect the magnitude of sideward flow within
reaction plane. Differences in mean particle energy components in and out of
the reaction plane in semicentral collisions, depend sensitively on the
relative magnitude of shock speed in normal matter and speed of sound in hot
matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94
Recommended from our members
Surface Fluxes and Tropical Intraseasonal Variability: a Reassessment
The authors argue that interactive feedbacks involving surface moist enthalpy fluxes, both turbulent and radiative, are important to the dynamics of tropical intraseasonal variability. Evidence in favor of this hypothesis includes the observed spatial distribution of intraseasonal variance in precipitation and outgoing longwave radiation, the observed relationship between intraseasonal latent heat flux and precipitation anomalies in regions where intraseasonal variability is strong, and sensitivity experiments performed with a small number of general circulation and idealized models. The authors argue that it would be useful to assess the importance of surface fluxes to intraseasonal variability in a larger number of comprehensive numerical models
Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment
Initial results are presented from CHOOZ, a long-baseline reactor-neutrino
vacuum-oscillation experiment. Electron antineutrinos were detected by a liquid
scintillation calorimeter located at a distance of about 1 km. The detector was
constructed in a tunnel protected from cosmic rays by a 300 MWE rock
overburden. This massive shielding strongly reduced potentially troublesome
backgrounds due to cosmic-ray muons, leading to a background rate of about one
event per day, more than an order of magnitude smaller than the observed
neutrino signal. From the statistical agreement between detected and expected
neutrino event rates, we find (at 90% confidence level) no evidence for
neutrino oscillations in the electron antineutrino disappearance mode for the
parameter region given approximately by deltam**2 > 0.9 10**(-3) eV**2 for
maximum mixing and (sin(2 theta)**2) > 0.18 for large deltam**2.Comment: 13 pages, Latex, submitted to Physics Letters
- …