579 research outputs found
Effect of disorder outside the CuO planes on of copper oxide superconductors
The effect of disorder on the superconducting transition temperature
of cuprate superconductors is examined. Disorder is introduced into the cation
sites in the plane adjacent to the CuO planes of two single-layer
systems, BiSrLnCuO and
LaNdSrCuO. Disorder is controlled by changing
rare earth (Ln) ions with different ionic radius in the former, and by varying
the Nd content in the latter with the doped carrier density kept constant. We
show that this type of disorder works as weak scatterers in contrast to the
in-plane disorder produced by Zn, but remarkably reduces suggesting
novel effects of disorder on high- superconductivity.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
Analysis of transport properties of iron pnictides: spin-fluctuation scenario
We present a phenomenological theory of quasiparticle scattering and
transport relaxation in the normal state of iron pnictides based on the
simplified two-band model coupled via spin fluctuations. In analogy with
anomalous properties of cuprates it is shown that a large and anomalous
normal-state resistivity and thermopower can be interpreted as the consequence
of strong coupling to spin fluctuations. The generalization to the
superconducting phase is also discussed.Comment: Revised version, 6 pages, 11 references adde
Emergent Phases of Nodeless and Nodal Superconductivity Separated by Antiferromagnetic Order in Iron-based Superconductor (Ca4Al2O6)Fe2(As1-xPx)2: 75As- and 31P-NMR Studies
We report P- and As-NMR studies on
(CaAlO)Fe(AsP) with an isovalent substitution
of P for As. We present the novel evolution of emergent phases that the
nodeless superconductivity (SC) in 00.4 and the nodal one around
=1 are intimately separated by the onset of a commensurate stripe-type
antiferromagnetic (AFM) order in 0.5 0.95, as an isovalent
substitution of P for As decreases a pnictogen height measured from
the Fe plane. It is demonstrated that the AFM order takes place under a
condition of 1.32\AA1.42\AA, which is also the case for other
Fe-pnictides with the Fe state in (Fe) layers. This novel
phase evolution with the variation in points to the importance of
electron correlation for the emergence of SC as well as AFM order.Comment: 5pages, 4figures; accepted for publication as a Rapid Communication
in Phys. Rev.
Direct observation of the mass renormalization in SrVO by angle resolved photoemission spectroscopy
We have performed an angle-resolved photoemission study of the
three-dimensional perovskite-type SrVO. Observed spectral weight
distribution of the coherent part in the momentum space shows cylindrical Fermi
surfaces consisting of the V 3 orbitals as predicted by
local-density-approximation (LDA) band-structure calculation. The observed
energy dispersion shows a moderately enhanced effective mass compared to the
LDA results, corresponding to the effective mass enhancement seen in the
thermodynamic properties. Contributions from the bulk and surface electronic
structures to the observed spectra are discussed based on model calculations.Comment: 5 pages, 5 figure
Momentum-Resolved Ultrafast Electron Dynamics in Superconducting Bi2Sr2CaCu2O8+delta
The non-equilibrium state of the high-Tc superconductor Bi2Sr2CaCu2O8+delta
and its ultrafast dynamics have been investigated by femtosecond time- and
angle-resolved photoemission spectroscopy well below the critical temperature.
We probe optically excited quasiparticles at different electron momenta along
the Fermi surface and detect metastable quasiparticles near the antinode. Their
decay through e-e scattering is blocked by a phase space restricted to the
nodal region. The lack of momentum dependence in the decay rates is in
agreement with relaxation dominated by Cooper pair recombination in a boson
bottleneck limit
High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study
We report 75As-NMR study on the Fe-pnictide high-Tc superconductor
Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic
rare-earth elements. The measurement of the nuclear-spin lattice-relaxation
rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place
at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately
in the normal state. These features are consistently described by the multiple
fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting.
Incorporating the theory based on band calculations, we propose that the reason
that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS
multiplicity is maximized, and hence the FS nesting condition is better than
that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let
- …