579 research outputs found

    Effect of disorder outside the CuO2_{2} planes on TcT_{c} of copper oxide superconductors

    Full text link
    The effect of disorder on the superconducting transition temperature TcT_{c} of cuprate superconductors is examined. Disorder is introduced into the cation sites in the plane adjacent to the CuO2_{2} planes of two single-layer systems, Bi2.0_{2.0}Sr1.6_{1.6}Ln0.4_{0.4}CuO6+δ_{6+\delta} and La1.85−y_{1.85-y}Ndy_{y}Sr0.15_{0.15}CuO4_{4}. Disorder is controlled by changing rare earth (Ln) ions with different ionic radius in the former, and by varying the Nd content in the latter with the doped carrier density kept constant. We show that this type of disorder works as weak scatterers in contrast to the in-plane disorder produced by Zn, but remarkably reduces TcT_{c} suggesting novel effects of disorder on high-TcT_{c} superconductivity.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Analysis of transport properties of iron pnictides: spin-fluctuation scenario

    Full text link
    We present a phenomenological theory of quasiparticle scattering and transport relaxation in the normal state of iron pnictides based on the simplified two-band model coupled via spin fluctuations. In analogy with anomalous properties of cuprates it is shown that a large and anomalous normal-state resistivity and thermopower can be interpreted as the consequence of strong coupling to spin fluctuations. The generalization to the superconducting phase is also discussed.Comment: Revised version, 6 pages, 11 references adde

    Emergent Phases of Nodeless and Nodal Superconductivity Separated by Antiferromagnetic Order in Iron-based Superconductor (Ca4Al2O6)Fe2(As1-xPx)2: 75As- and 31P-NMR Studies

    Full text link
    We report 31^{31}P- and 75^{75}As-NMR studies on (Ca4_4Al2_2O6_{6})Fe2_2(As1−x_{1-x}Px_x)2_2 with an isovalent substitution of P for As. We present the novel evolution of emergent phases that the nodeless superconductivity (SC) in 0≤x≤\le x \le0.4 and the nodal one around xx=1 are intimately separated by the onset of a commensurate stripe-type antiferromagnetic (AFM) order in 0.5≤x≤\le x \le 0.95, as an isovalent substitution of P for As decreases a pnictogen height hPnh_{Pn} measured from the Fe plane. It is demonstrated that the AFM order takes place under a condition of 1.32\AA≤hPn≤\le h_{Pn} \le1.42\AA, which is also the case for other Fe-pnictides with the Fe2+^{2+} state in (FePnPn)−^{-} layers. This novel phase evolution with the variation in hPnh_{Pn} points to the importance of electron correlation for the emergence of SC as well as AFM order.Comment: 5pages, 4figures; accepted for publication as a Rapid Communication in Phys. Rev.

    Direct observation of the mass renormalization in SrVO3_3 by angle resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission study of the three-dimensional perovskite-type SrVO3_3. Observed spectral weight distribution of the coherent part in the momentum space shows cylindrical Fermi surfaces consisting of the V 3dd t2gt_{2g} orbitals as predicted by local-density-approximation (LDA) band-structure calculation. The observed energy dispersion shows a moderately enhanced effective mass compared to the LDA results, corresponding to the effective mass enhancement seen in the thermodynamic properties. Contributions from the bulk and surface electronic structures to the observed spectra are discussed based on model calculations.Comment: 5 pages, 5 figure

    Momentum-Resolved Ultrafast Electron Dynamics in Superconducting Bi2Sr2CaCu2O8+delta

    Full text link
    The non-equilibrium state of the high-Tc superconductor Bi2Sr2CaCu2O8+delta and its ultrafast dynamics have been investigated by femtosecond time- and angle-resolved photoemission spectroscopy well below the critical temperature. We probe optically excited quasiparticles at different electron momenta along the Fermi surface and detect metastable quasiparticles near the antinode. Their decay through e-e scattering is blocked by a phase space restricted to the nodal region. The lack of momentum dependence in the decay rates is in agreement with relaxation dominated by Cooper pair recombination in a boson bottleneck limit

    High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study

    Full text link
    We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let
    • …
    corecore