12,808 research outputs found

    Systematic study of the symmetry energy coefficient in finite nuclei

    Full text link
    The symmetry energy coefficients in finite nuclei have been studied systematically with a covariant density functional theory (DFT) and compared with the values calculated using several available mass tables. Due to the contamination of shell effect, the nuclear symmetry energy coefficients extracted from the binding energies have large fluctuations around the nuclei with double magic numbers. The size of this contamination is shown to be smaller for the nuclei with larger isospin value. After subtracting the shell effect with the Strutinsky method, the obtained nuclear symmetry energy coefficients with different isospin values are shown to decrease smoothly with the mass number AA and are subsequently fitted to the relation 4asymA=bvA−bsA4/3\dfrac{4a_{\rm sym}}{A}=\dfrac{b_v}{A}-\dfrac{b_s}{A^{4/3}}. The resultant volume bvb_v and surface bsb_s coefficients from axially deformed covariant DFT calculations are 121.73121.73 and 197.98197.98 MeV respectively. The ratio bs/bv=1.63b_s/b_v=1.63 is in good agreement with the value derived from the previous calculations with the non-relativistic Skyrme energy functionals. The coefficients bvb_v and bsb_s corresponding to several available mass tables are also extracted. It is shown that there is a strong linear correlation between the volume bvb_v and surface bsb_s coefficients and the ratios bs/bvb_s/b_v are in between 1.6−2.01.6-2.0 for all the cases.Comment: 16 pages, 6 figure

    Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells

    Get PDF
    We study the hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells. The corresponding polariton states are given. The analytical solution and the numerical result of the stationary spectrum for the cavity field are finishedComment: 3 pages, 1 figure. appear in Communications in Theoretical Physic

    Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes

    Full text link
    Neutron-deficient krypton isotopes are of particular interest due to the coexistence of oblate and prolate shapes in low-lying states and the transition of ground-state from one dominate shape to another as a function of neutron number. A detailed interpretation of these phenomena in neutron-deficient Kr isotopes requires the use of a method going beyond a mean-field approach that permits to determine spectra and transition probabilities. The aim of this work is to provide a systematic calculation of low-lying state in the even-even 68-86Kr isotopes and to understand the shape coexistence phenomenon and the onset of large collectivity around N=40 from beyond relativistic mean-field studies. The starting point of our method is a set of relativistic mean-field+BCS wave functions generated with a constraint on triaxial deformations (beta, gamma). The excitation energies and electric multipole transition strengths of low-lying states are calculated by solving a five-dimensional collective Hamiltonian (5DCH) with parameters determined by the mean-field wave functions. To examine the role of triaxiality, a configuration mixing of both particle number (PN) and angular momentum (AM) projected axially deformed states is also carried out within the exact generator coordinate method (GCM) based on the same energy density functional. The energy surfaces, the excitation energies of 0^+_2, 2^+_1, 2^+_2 states, as well as the E0 and E2 transition strengths are compared with the results of similar 5DCH calculations but with parameters determined by the non-relativistic mean-field wave functions, as well as with the available data...Comment: 23 pages, 10 figure

    Triaxially deformed relativistic point-coupling model for Λ\Lambda hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties

    Full text link
    The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E2E2 transition strength in low-lying states of hypernucleus Λ7^{7}_\LambdaLi. Many more data on low-lying states of Λ\Lambda hypernuclei will be measured soon for sdsd-shell nuclei, providing good opportunities to study the Λ\Lambda impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of Λ\Lambda hyperon impurity effect on the low-lying states of sdsd-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ\Lambda hyperon is injected into the lowest positive-parity (Λs\Lambda_s) and negative-parity (Λp\Lambda_p) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ\Lambda binding energies of hypernuclei as well as the potential energy surfaces (PESs) in (β,γ)(\beta, \gamma) deformation plane. We also calculate the PESs for the Λ\Lambda hypernuclei with good quantum numbers using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking Λ25,27^{25,27}_{\Lambda}Mg and Λ31^{31}_{\Lambda}Si as examples, we analyse the impurity effects of Λs\Lambda_s and Λp\Lambda_p on the low-lying states of the core nuclei...Comment: 15 pages with 18 figures and 1 table (version to be published in Physical Review C

    Entangling two superconducting LC coherent modes via a superconducting flux qubit

    Full text link
    Based on a pure solid-state device consisting of two superconducting LC circuits coupled to a superconducting flux qubit, we propose in this paper that the maximally entangled coherent states of the two LC modes can be generated for arbitrary coherent states through flux qubit controls.Comment: 5 pages, 2 figure
    • …
    corecore