27,033 research outputs found

    Structure and stability of quasi-two-dimensional boson-fermion mixtures with vortex-antivortex superposed states

    Full text link
    We investigate the equilibrium properties of a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex-antivortex superposed state (VAVSS) using a quantum-hydrodynamic model. We show that, depending on the choice of parameters, the DBFM with a VAVSS can exhibit rich phase structures. For repulsive boson-fermion (BF) interaction, the Bose-Einstein condensate (BEC) may constitute a petal-shaped "core" inside the honeycomb-like fermionic component, or a ring-shaped joint "shell" around the onion-like fermionic cloud, or multiple segregated "islands" embedded in the disc-shaped Fermi gas. For attractive BF interaction just below the threshold for collapse, an almost complete mixing between the bosonic and fermionic components is formed, where the fermionic component tends to mimic a bosonic VAVSS. The influence of an anharmonic trap on the density distributions of the DBFM with a bosonic VAVSS is discussed. In addition, a stability region for different cases of DBFM (without vortex, with a bosonic vortex, and with a bosonic VAVSS) with specific parameters is given.Comment: 8 pages,5 figure

    Modification of nucleon properties in nuclear matter and finite nuclei

    Full text link
    We present a model for the description of nuclear matter and finite nuclei, and at the same time, for the study of medium modifications of nucleon properties. The nucleons are described as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The model explicitly incorporates quark degrees of freedom into nuclear many-body systems and provides satisfactory results on the nuclear properties. The present model predicts a significant increase of the nucleon radius at normal nuclear matter density. It is very interesting to see the nucleon properties change from the nuclear surface to the nuclear interior.Comment: 22 pages, 10 figure

    Hole Doping Dependence of the Coherence Length in La2xSrxCuO4La_{2-x}Sr_xCuO_4 Thin Films

    Full text link
    By measuring the field and temperature dependence of magnetization on systematically doped La2xSrxCuO4La_{2-x}Sr_xCuO_4 thin films, the critical current density jc(0)j_c(0) and the collective pinning energy Up(0)U_p(0) are determined in single vortex creep regime. Together with the published data of superfluid density, condensation energy and anisotropy, for the first time we derive the doping dependence of the coherence length or vortex core size in wide doping regime directly from the low temperature data. It is found that the coherence length drops in the underdoped region and increases in the overdoped side with the increase of hole concentration. The result in underdoped region clearly deviates from what expected by the pre-formed pairing model if one simply associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure

    Intrinsic Percolative Superconductivity in KxFe2-ySe2 Single Crystals

    Full text link
    Magnetic field penetration and magnetization hysteresis loops (MHLs) have been measured in KxFe2-ySe2 single crystals. The magnetic field penetration shows a two-step feature with a very small full-magnetic-penetration field (Hp1= 300 Oe at 2 K), and accordingly the MHL exhibits an abnormal vanishing of the central peak near zero field below 13 K. The width of the MHL in KxFe2-ySe2 at the same temperature is in general much smaller than that measured in the relatives Ba0.6K0.4Fe2As2 and Ba(Fe0.92Co0.08)2As2, and the MHLs in the latter two samples show the normal central peak near zero field. All these anomalies found in KxFe2-ySe2 can be understood in the picture that the sample is percolative with weakly coupled superconducting islands.Comment: 5 page, 4 figure

    Entanglement, fidelity and topological entropy in a quantum phase transition to topological order

    Full text link
    We present a numerical study of a quantum phase transition from a spin-polarized to a topologically ordered phase in a system of spin-1/2 particles on a torus. We demonstrate that this non-symmetry-breaking topological quantum phase transition (TOQPT) is of second order. The transition is analyzed via the ground state energy and fidelity, block entanglement, Wilson loops, and the recently proposed topological entropy. Only the topological entropy distinguishes the TOQPT from a standard QPT, and remarkably, does so already for small system sizes. Thus the topological entropy serves as a proper order parameter. We demonstrate that our conclusions are robust under the addition of random perturbations, not only in the topological phase, but also in the spin polarized phase and even at the critical point.Comment: replaced with published versio
    corecore